Control program for noncoplanar heliocentric flight to Venus of non-perfectly reflecting solar sail spacecraft
- Authors: Khabibullin R.M.1
-
Affiliations:
- Samara National Research University
- Issue: Vol 18, No 4 (2019)
- Pages: 117-128
- Section: AIRCRAFT AND SPACE ROCKET ENGINEERING
- URL: https://journals.ssau.ru/vestnik/article/view/7620
- DOI: https://doi.org/10.18287/2541-7533-2019-18-4-117-128
- ID: 7620
Cite item
Full Text
Abstract
A noncoplanar controlled heliocentric flight to Venus of a spacecraft with a non-perfectly reflecting solar sail is considered. The aim of the heliocentric flight is to get a spacecraft into Hill sphere of Venus with zero hyperbolic excess velocity. An algorithm has been developed for applying the locally optimal control laws for the fastest change of the osculating elements. Solar sail orientation is controlled by thin-film control elements arranged along the solar sail surface perimeter. The flight trajectory, the control program and the required width and area of thin-film control elements are obtained as a result of motion simulation.
About the authors
R. M. Khabibullin
Samara National Research University
Author for correspondence.
Email: khabibullin.roman@gmail.com
Engineer, Department of Space Engineering
Russian FederationReferences
- Advances in solar sailing / ed. by M. Macdonald. Berlin: Springer, 2014. 987 p. doi: 10.1007/978-3-642-34907-2
- Johnson L., Whorton M., Heaton A., Pinson R., Laue G., Adams Ch. NanoSail-D: A solar sail demonstration mission. Acta Astronautica. 2011. V. 68, Iss. 5-6. P. 571-575. doi: 10.1016/j.actaastro.2010.02.008
- Mori O., Sawada H., Funase R., Morimoto M., Endo T., Yamamoto T., Tsyda Y., Kawakatsu Y., Kawaguchi J. First solar power sail demonstration by IKAROS. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan. 2010. V. 8, Iss. 27. P. 25-31. doi: 10.2322/tastj.8.to_4_25
- Biddy C., Svitek T. LightSail-1 solar sail design and qualification. Proceedings of the 41st Aerospace Mechanisms Symposium, Jet Propulsion Laboratory (May 16-18, 2012, San Luis Obispo, CA). 2012. P. 451-463.
- Heiligers J., Diedrich B., Derbes B., McInnes C. Sunjammer: Preliminary end-to-end mission design. Proceedings of the AIAA/AAS Astrodynamics Specialist Conference (August, 4-7, 2014, San Diego, CA). 2014. doi: 10.2514/6.2014-4127
- Polyakhova E.N. Kosmicheskiy polet s solnechnym parusom [Solar sail spacecraft mission]. Moscow: Librocom Publ., 2011. 320 p.
- McInnes C.R. Solar sailing: technology, dynamics and mission applications. Berlin: Springer Science & Business Media, 2013. 296 p.
- DuPont Kapton-B Technical Bulletin. Available at: http://www.dupont.com/content/dam/dupont/products-and-services/membranes-and-films/polyimde-films/documents/DEC-Kapton-B-datasheet.pdf
- Ishkov S.A., Starinova O.L. Optimization and modelling of movement with the solar sail. Izvestiya Samarskogo Nauchnogo Tsentra RAN. 2005. V. 7, no. 1. P. 99-106. (In Russ.)
- Khabibullin R.M., Starinova O.L., Chernyakina I.V. Nonlinear analysis of three-dimensional guided motion of solar sail spacecraft. AIP Conference Proceedings. 2018. V. 2046. doi: 10.1063/1.5081564
- Jet Propulsion Laboratory NASA. JPL Solar System Dynamics. Available at:https://ssd.jpl.nasa.gov