Theory of gas turbine engine optimal gas generator
- Authors: Grigoriev A.V.1, Kosmatov A.A.1, Rudakov О.A.1, Solovieva A.V.1
-
Affiliations:
- JSC “UEC-Klimov”
- Issue: Vol 18, No 2 (2019)
- Pages: 52-61
- Section: AIRCRAFT AND SPACE ROCKET ENGINEERING
- URL: https://journals.ssau.ru/vestnik/article/view/6741
- DOI: https://doi.org/10.18287/2541-7533-2019-18-2-52-61
- ID: 6741
Cite item
Full Text
Abstract
The article substantiates the necessity of designing an optimal gas generator of a gas turbine engine. The generator is to provide coordinated joint operation of its units: compressor, combustion chamber and compressor turbine with the purpose of reducing the period of development of new products, improving their fuel efficiency, providing operability of the blades of a high-temperature cooled compressor turbine and meeting all operational requirements related to the operation of the optimal combustion chamber including a wide range of stable combustion modes, high-altitude start at subzero air and fuel temperature conditions and prevention of the atmosphere pollution by toxic emissions. Methods of optimizing the parameters of coordinated joint operation of gas generator units are developed. These parameters include superficial flow velocities in the boundary interface cross sections between the compressor and the combustion chamber, as well as between the combustion chamber and the compressor turbine. The effective efficiency of the engine thermodynamic cycle is the optimization target function. The required depth of the turbine blades cooling is a functional constraint evaluated with account for calculations of irregularity and instability of the gas temperature field and the actual flow turbulence intensity at the blades’ inlet. We carried out theoretical analysis of the influence of various factors on the gas flow that causes changes in the flow total pressure in the channels of the gas generator gas dynamic model, i.e. changes in the efficiencies of its units. It is shown that the long period (about five years) of the engine final development time, is due to the necessity to perform expensive full-scale tests of prototypes, in particular, it is connected with an incoordinate assignment in designing the values of the flow superficial velocities in the boundary sections between the gas generator units. Designing of an optimal gas generator is only possible on the basis of an integral mathematical model of an optimal combustion chamber.
About the authors
A. V. Grigoriev
JSC “UEC-Klimov”
Author for correspondence.
Email: klimov@klimov.ru
Candidate of Science (Engineering)
General Designer
A. A. Kosmatov
JSC “UEC-Klimov”
Email: klimov@klimov.ru
Design Engineer
Russian FederationО. A. Rudakov
JSC “UEC-Klimov”
Email: klimov@klimov.ru
Candidate of Science (Engineering), Associate Professor
Science Advisor
A. V. Solovieva
JSC “UEC-Klimov”
Email: klimov@klimov.ru
Deputy Chief Designer for Advanced Research
Russian FederationReferences
- Grigoriev A.V, Mitrofanov V.A., Rudakov O.A., Salivon N.D. Teoriya kamery sgoraniya [Theory of the combustion chamber]. SPb: Nauka Publ., 2010. 227 p.
- Grigoriev A.V., Mitrofanov V.A., Rudakov O.A., Solovieva A.V. Optimizatsiya kamery sgoraniya [Combustion chamber optimization]. SPb: Polytechnic University Publ., 2015. 152 p.
- Grigoriev A.V., Golubchikov P.P., Ilyushin M.Yu., Rudakov O.A., Solovieva A.V. The concept of matching the joint operation of the combustion chamber, the compressor and the turbine. Vestnik of the Samara State Aerospace University. 2011. No. 5 (29). P. 78-82. (In Russ.)
- Teoriya vozdushno-reaktivnykh dvigateley / pod red. S.M. Shlyakhtenko [Theory of air-jet engines / ed. by S.М. Shlyakhtenko]. Moscow: Mashinostroenie Publ., 1975. 568 p.
- Abiants V.Kh. Teoriya aviatsionnykh gazovykh turbin [Theory of aviation gas turbines]. Moscow: Mashinostroenie Publ., 1979. 246 p.
- D'yachkov O.V, Safonov A.Yu., Grachev A.M., Rudakov O.A. Metodologiya rascheta potrebnoy glubiny ohlazhdeniya lopatok pervoy stupeni turbiny kompressora. Sbornik statey mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Klimovskie chteniya – 2017. Perspektivnye napravleniya razvitiya aviadvigatelestroeniya». SPb: Skifiya-print Publ., 2017. P. 83-88. (In Russ.)
- Rudakov O.A., Mitrofanov V.A. Defining combustor gas flow turbulence parameters on the basis of integration and transformations of Reynolds and Navier-Stokes equations. Vestnik of the Samara State Aerospace University. 2002. No. 2 (2). P. 92-96. (In Russ.)
- Grigoriev A.V., Ilyushin M.Yu., Mitrofanov V.A., Rassokhin V.A., Rudakov O.A., Solovieva A.V. Conditions of compatibility of compressor and turbine used as part of a gas generator required to ensure turbine operability. Vestnik of the Samara State Aerospace University. 2013. No. 3 (41), part 1. P. 73-78. (In Russ.)
- Grigoriev A.V., Ilyushin M.Yu., Rudakov O.A., Solovieva A.V. Optimizatsiya parametrov soglasovaniya sovmestnoy raboty kompressora, kamery sgoraniya i turbiny kompressora. Sbornik dokladov mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Klimovskie chteniya – 2018. Perspektivnye napravleniya razvitiya aviadvigatelestroeniya». SPb: Skifiya-print Publ., 2018. P. 5-10. (In Russ.)
- Sarkisov A.A., Mitrofanov V.A., Rudakov O.A., Salivon N.D., Sigalov Ju.V. Sposob raboty gazoturbinnogo dvigatelya i ognevoy blok dlya szhiganiya smesi topliv [Method of operation of gas turbine engine and fire unit for combustion of fuel mixture]. Patent RF, no. 2145669, 2000. (Publ. 20.02.2000)
- Sarkisov A.A., Mitrofanov V.A., Rudakov O.A., Salivon N.D., Sigalov Ju.V. Kamera sgoraniya s optimal'nym chislom forsunok [Combustion chamber with optimum number of injectors]. Patent RF, no. 2171432, 2001. (Publ. 27.07.2001)
- Rudakov O.A. Zharovaya truba kamery sgoraniya gazoturbinnogo dvigatelya [Combustion liner of gas-turbine engine]. Patent RF, no. 2343355, 2009. (Publ. 10.01.2009, bull. no. 1)
- Grigor'ev A.V., Rudakov O.A., Salivon N.D. Kamera sgoraniya s optimal'nym rezhimom raboty [Combustion chamber with optimum operating mode]. Patent RF, no. 2400673, 2010. (Publ. 27.09.2010, bull. no. 27).