Determination of completeness of combustion, temperature and emission characteristics in a swirl flow based on the theory of turbulent combustion


Cite item

Full Text

Abstract

A study of combustion characteristics in a swirling jet was carried out from the perspective of the theory of turbulent combustion. Particular attention is paid to the reverse-flow area formed from the vane swirler. Based on the known composition of the mixture, the parameters of the speed of propagation of the flame front, completeness of combustion, temperature and emission of nitrogen oxides are successively determined. The created analytical technique was tested in the combustion range of inhomogeneous and homogeneous mixtures. Calculations showed the dependence of emission on the mixing parameters.

About the authors

Yu. B. Aleksandrov

Kazan National Research Technical University named after A.N. Tupolev

Author for correspondence.
Email: alexwischen@rambler.ru

Candidate of Science (Chemistry), Associate Professor of the Department of Jet Engines and Power Plants

Russian Federation

B. G. Mingazov

Kazan National Research Technical University named after A.N. Tupolev

Email: bgmingazov@kai.ru

Doctor of Science (Engineering), Professor, Department of Jet Engines and Power Plants

Russian Federation

References

  1. Gupta A.K. Modulated swirl combustor. 2nd European Symposium on Combustion (September, 1-5, 1975, Orleans, France).
  2. Mingazov B.G. Kamery sgoraniya gazoturbinnykh dvigateley: konstruktsiya, modelirovanie protsessov i raschet: ucheb. posobie [Combustion chambers of gas turbine engines. Design, simulation and calculation: Tutorial]. Kazan: Kazan National Research Technical University Publ., 2006. 220 p.
  3. Lefebvre A.H. Gas turbine combustion. Hemisphere Pub. Corp., 1983. 531 p.
  4. Osnovy prakticheskoy teorii goreniya: ucheb. posobie / pod red. V.V. Pomerantseva [Fundamentals of the practical theory of combustion]. Leningrad: Energoatomizdat. Leningradskoe Otdelenie Publ., 1986. 312 p.
  5. Sulaiman A.I., Mingazov B.G., Aleksandrov Y.B., Nguyen T.D. Investigation of the flow mixing behind the flame tube head of a combustion chamber in a gas turbine engine. Russian Aeronautics. 2019. V. 62, Iss. 2. P. 281-286. doi: 10.3103/S1068799819030267
  6. Hacker D.S. A simplified mixing length model of flame stability in swirling combustion. AIAA Journal. 1974. V. 12, Iss. 1. P. 65-71. doi: 10.2514/3.49154
  7. Kosterin V.A. et al. Stabilizatsiya plameni v potoke sistemami struy. Trudy KAI «Aviatsionnye Dvigateli». Iss. 167. Kazan: KAI Publ., 1974. P. 113-118. (In Russ.)
  8. Doroshenko V.E. O protsesse goreniya v kamere gazoturbinnogo dvigatelya. Tret'e Vsesoyuznoe Soveshchanie po Teorii Goreniya. V. 2. Moscow: AN SSSR Publ., 1960. P. 262-269. (In Russ.)
  9. Damkohler G. NASA technical memorandum. 1947.
  10. Shchelkin K.I., Troshin Ya.K. Gazodinamika goreniya [Combustion gas dynamics]. Moscow: AN SSSR Publ., 1963. 254 p.
  11. Il'yashenko S.M., Talantov A.V. Teoriya i raschet pryamotochnykh kamer sgoraniya: ucheb. posobie [Theory and calculation of direct-flow combustion chambers]. Moscow: Mashinostroenie Publ., 1964. 306 p.
  12. Zeldovich Ya.B. Theory of heat density of an isothermal reaction in a jet. I. Zhurnal Tekhnicheskoy Fiziki. 941. V. 11, no. 6. P. 493-500. (In Russ.)
  13. Metghalchi M., Keck J.C. Burning velocities of mixtures of air with methanol, isooctane, and indolent at high pressure and temperature. Combustion and Flame. 1982. V. 48. P. 191-210. doi: 10.1016/0010-2180(82)90127-4
  14. Lukachev S.V., Matveev S.G., Zubrilin I.А., Sigidaev А.V. Dependence of methane laminar flame propagation speed on the pressure and initial temperature. Vestnik of Samara University. Aerospace and Mechanical Engineering. 2016. V. 15, no. 4. P. 224-234. (In Russ.). doi: 10.18287/2541-7533-2016-15-4-224-234
  15. Konnov A.A. The temperature and pressure dependences of the laminar burning velocity: experiments and modelling. Proceedings of the European Combustion Meeting (March 30-April 2, 2015, Budapest, Hungary).
  16. Smorodin F.K., Lyk'yanov V.I., Smorodin I.F. Diagnostics of interaction between a gas jet and a machined surface using the optical correlation technique. Izvestiya Vysshikh Uchebnykh Zavedenij. Aviatsionnaya Tekhnika. 2003. No. 1. P. 44-46. (In Russ.)
  17. Mingazov B.G., Aleksandrov Yu.B., Kosterin A.V., Tokmovtsev Yu.V. Protsessy goreniya i avtomatizirovannoe proektirovanie kamer sgoraniya GTD i GTU: ucheb. posobie [Combustion processes and computer-aided design of combustion chambers for gas turbine engines and gas turbines: textbook]. Kazan: KNRTU-KAI Publ., 2015. 159 p.
  18. Kanilo P.M., Podgornyy A.N., Khristich V.A. Energeticheskie i ekologicheskie kharakteristiki GTD pri ispol'zovanii uglevodorodnykh topliv i vodoroda [Energy and environmental characteristics of gas turbine engines using hydrocarbon fuels and hydrogen]. Kiev: Naukova Dumka Publ., 1987. 222 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies