Main approaches and features of the design of aircraft hydro-mechanical control systems


Cite item

Full Text

Abstract

The main purpose of the article is to identify the main approaches and define the concept when modeling the hydro-mechanical control systems of an aircraft. The advantages and importance of a computational experiment with the aid of a virtual test bed at the stage of constructive parametric debugging of the elements of complex hydraulic systems are emphasized. The characteristics obtained from the results of the computational experiment will allow us to determine the level of adequacy of the models and subsequently choose the most optimal design and operational parameters.

About the authors

P. V. Petrov

Ufa University of Science and Technology

Author for correspondence.
Email: pgl.petrov@mail.ru
ORCID iD: 0000-0001-7901-2853

Candidate of Science (Engineering), Associate Professor of the Department of Applied Hydromechanics

Russian Federation

V. A. Tselischev

Ufa University of Science and Technology

Email: pgl.ugatu@mail.ru

Doctor of Science (Engineering), Professor, Head of Department of Applied Hydromechanics

Russian Federation

D. A. Kuderko

R and D Center “Technodinamika”

Email: dm_kuderko@mail.ru

Candidate of Science (Engineering), Head Center

Russian Federation

References

  1. Kuderko D.A., Tselischev V.A., Tselischev D.V. Prospects for development of flight control surfaces actuators of civil aircraft. PNRPU Aerospace Engineering Bulletin. 2021. No. 67. P. 70-84. (In Russ.). doi: 10.15593/2224-9982/2021.67.07
  2. Mozaryn J., Winnicki A., Suski D. Modeling of electro-hydraulic servo-drive for advanced control system design. Springer Proceedings in Mathematics & Statistics. 2022. V. 362. P. 183-191. doi: 10.1007/978-3-030-77306-9_16
  3. Kuznetsov V.E., Dinh Khanh N., Lukichev A.N., Filatov D.M. Hybrid steering system's Pid-based adaptive control. Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021 (January, 26-28, 2021, Moscow). doi: 10.1109/ElConRus51938.2021.9396303
  4. Gimadiev A.G., Kryuchkov A.N., Prokof'ev A.B. Avtomatika i regulirovanie aviatsionnykh dvigateley i energeticheskikh ustanovok [Automation and control of aircraft engines and power plants]. Part 1. Samara: Samara State Aerospace University Publ., 2002. 139 p.
  5. Popov D.N. Dinamika i regulirovanie gidro- i pnevmosistem [Dynamics and control of hydraulic and pneumatic systems]. Moscow: Mashinostroenie Publ., 1987. 464 p.
  6. Abbasov I.B. Computer modeling in the aerospace industry. Hoboken: Wiley-Scrivener, 2020. 282 p.
  7. Zadiraka V.K. Using reserves of computing optimization to solve complex problems. Cybernetics and Systems Analysis. 2019. V. 55, no. 1. P. 40-54. doi: 10.1007/s10559-019-00111-0
  8. Jin Z.-L., Zhou Q., Zhao W.-Z. Dynamics modeling and performance analysis for electro hydraulic braking system. Beijing Ligong Daxue Xuebao. 2018. V. 38, Iss. 7. P. 117-122. doi: 10.15918/j.tbit1001-0645.2018.1.026
  9. Petrov P.V., Tselishchev V.A. Osnovy algoritmicheskogo modelirovaniya nelineynykh gidromekhanicheskikh ustroystv: ucheb. posobie [Fundamentals of algorithmic modeling of nonlinear hydro-mechanical devices: study guide]. Ufa: Ufa State Aviation Technical University Publ., 2012. 136 p.
  10. Petrov P.V., Chernov D.D. Necessity of research of nonlinear hydro-mechanical systems in generalized parameters. Handbook. An Engineering Journal. 2019. No. 4 (265). P. 28-33. (In Russ.). doi: 10.14489/hb.2019.04.pp.028-033
  11. Mashkov M.A., Matrosov A.V., Sunarchin R.A. Obobshchennye kharakteristiki elektrogidravlicheskogo sledyashchego privoda. Materialy Nauchnogo Foruma s Mezhdunarodnym Uchastiem «Nedelya Nauki SPbPU». Institut Energetiki I Transportnykh Sistem (November 30 - December 05, 2015, Saint-Petersburg). Part 1. St. Petersburg: Peter the Great St. Petersburg Polytechnic University Publ., 2015. P. 91-93. (In Russ.)
  12. Gimranov E.G., Sunarchin R.A., Khasanova L.M. Generalized dynamic characteristics of mathematical models of hydraulic units. Bulletin of Perm State Technical University. Aerospace Engineering. 2000. No. 5. P. 99-106. (In Russ.)
  13. Gareev A., Gimadiev A., Popelnyuk I., Stadnik D., Sverbilov V. Simulation of electro-hydraulic systems taking into account typical faults. BATH/ASME 2020 Symposium on Fluid Power and Motion Control, FPMC 2020 (September, 9-11, 2020, Virtual, Online). doi: 10.1115/FPMC2020-2792
  14. Petrov P.V., Tselishchev V.A. Osnovy avtomatizirovannogo proektirovaniya gidromekhanicheskikh ustroystv [Fundamentals of computer-aided design of hydro-mechanical devices]. Ufa: RIK UGATU Publ., 2019. 241 p.
  15. Kotkin G.L., Popov L.K., Cherkasskiy V.S. Komp'yuternoe modelirovanie fizicheskikh protsessov s ispol'zovaniem MATLAB: ucheb. posobie [Computer modeling of physical processes using MATLAB: study guide]. Moscow: Yurayt Publ., 2020. 202 p.
  16. Petrov P.V., Tselischev V.A. Numerical study of SAR CCD for steady-state and transient modes. PNRPU Aerospace Engineering Bulletin. 2019. No. 57. P. 7-16. (In Russ.). doi: 10.15593/2224-9982/2019.57.01

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies