3D-kinetic characteristics of slow fatigue crack growth in the aluminum alloy D16T


Cite item

Full Text

Abstract

It is presented the technique based on macro structural analysis of a typical fatigue fracture of a cylindrical specimen of alloy D16T with an annular notch in bending of constructing the diagram of stress intensity coefficient defined the period growth of fatigue crack. Analytical calculation of the change in the exponent m in Peris’ formula for calculating the speed of fatigue crack growth with respect to depth a in a system with consideration of the increase in the number of cycles N of high-cycle fatigue has be established using experimental data of fatigue fractures of the aluminum alloy D16T. This made it possible to draw the kinematic diagram of a slow fatigue crack growth of D16T in a 3-dimensional coordinate system. Analyzed and numerically determine volumes are formed with the space curve the kinetic diagram of a slow fatigue crack growth. Installed a new kinetic characteristic of fatigue crack growth; i.e. the amount of work of the stress intensity coefficient used to connect parameters of low-cycle fatigue and high-cycle fatigue.

About the authors

Yu. I. Kol’tsoun

Samara State Aerospace University

Author for correspondence.
Email: koltsoun_y.i@mail.ru

Doctor of Science (Engineering)

Professor at the common engineering education department

Russian Federation

D. P. Molyavko

OAO "Salut"

Email: darenok@inboxl.ru

Specialist in the department of strength

Russian Federation

A. D. Ignatovskiy

Samara State Aerospace University

Email: dis164@mail.ru

Student of faculty of aircraft engines

Russian Federation

T. A. Khibnik

Samara State Aerospace University

Email: tanya_hib@mail.ru

Candidate of Science (Engineering)

Assistant professor of machine design department

Russian Federation

References

  1. Shaniavski A.A. Bezopasnoe ustalostnoe razrushenie elementov aviakonstruktsii. Sinergetika v inzhenernykh prilozheniyakh [Tolerance fatigue failures of aircraft components. Synergetics in engineering applications]. Ufa: Monographiya Publ., 2003. 803 p.
  2. Pestrikov V.M., Morozov E.M. Mekhanika razrusheniya tverdykh tel [Mechanics of the fracture solid body]. Saint-Petersburg: Professiya Publ., 2002. 300 p.
  3. Kol’tsoun Yu.I., Khibnick T.A. Мethods calculation of fatigue crack growth period and her it's graphic generalization // Vestnik of the Samara State Aerospace University. 2009. No. 3(19), part 2. P. 70-79. (In Russ.)
  4. Troshchenko V.T., Krasovskiy A.J., Pokrovsky V.V., Sosnowsky L.A., Strizhalo V.O. Soprotivlenie materialov deformirovaniyu i razrusheniyu [The resistance of materials deformation and fracture. A Guide]. V. 2. Kiev: Naukova Dumka Publ., 1994. 701 p.
  5. Podlesnova D.P., Agapovichev A.V., Ignatovskiy A.D. Osobennosti rascheta bezopasnogo chisla tsiklov mnogotsiklovoi ustalosti dlya alyuminievogo splava D16T // Tezisy dokladov 63-y molodezhnoy nauchnoy konferentsii. Samara: Samara State Aerospace University Publ., 2013. P. 84-85. (In Russ.)
  6. Murakami S. Spravochnik po koeffitsientam intensivnosti napryazhenii [Reference coefficient of intensity of stresses. V. 1]. Moscow: Mir Publ., 1990. 448 p.
  7. Khibnick T.A., Kol’tsoun Yu.I. Kinetic diagram of slow fatigue crack growth. Crack growth // Vestnik of the Samara State Aerospace University. 2011. No. 3(27), part 4. P. 110-116. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 VESTNIK of the Samara State Aerospace University

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies