Optimization of operation mode and design parameters of a finely-dispersed metallic liquid-alloy generator

Cover Page

Cite item

Full Text

Abstract

During the process of designing new devices for the high-speed metallization process, there appears the necessity to define the stable operation range and search for the optimum values of the operation mode and design parameters. This paper describes a process of optimization of a device made for depositing low-melting metal coatings, based on the rocket chamber operation principle. The paper presents an analysis of the objective function surface response – metallizer operation performance. On the basis of this analysis the optimal values of fuel mass flow rate and excess oxidant ratio were determined. The choice of fuel and oxidizer throttling orifice cross-section areas was substantiated, the value of the throat cross-section for the metallizer flow-path was found. The expected performance of the designed device was also determined.

About the authors

V. S. Egorychev

Samara National Research University

Author for correspondence.
Email: egorychev_vs@mail.ru

Candidate of Science (Engineering), Associate Professor

Russian Federation

A. I. Ryazanov

Samara National Research University

Email: tr05@bk.ru
ORCID iD: 0000-0002-3123-2416

Senior Lecturer of the Department of Engine Production Technology

Russian Federation

A. I. Khaimovich

Samara National Research University

Email: berill_samara@bk.ru

Associate Professor, Doctor of Science (Engineering), Head of the Department of Engine Production Technology

Russian Federation

References

  1. Tabbara H., Gu S. Modelling of impingement phenomena for molten metallic droplets with low to high velocities. International Journal of Heat and Mass Transfer. 2012. V. 55, Iss. 7-8. P. 2081-2086. doi: 10.1016/j.ijheatmasstransfer.2011.12.010
  2. Barvinok V.A., Bogdanovich V.I. Physical and mathematical simulation of plasma-chemical heterogeneous synthesis from plasma fluxes. Technical Physics. 2008. V. 53, Iss. 1. P. 64-68. doi: 10.1134/s106378420801012x
  3. Kitamura J., Tosaki T., Mizuno H. Dense MoB/CoCr coatings to apply to pot-roll of galvanizing lines in steel industries. Proceedings of the International Thermal Spray Conference (May, 13-15, 2013, Gifu, Japan). P. 57-62.
  4. Ryazanov A.I., Egorychev V.S. Peculiarities of mixture formation and ignition of the fuel mixture in the metal sprayer chamber. Russian Aeronautics. 2018. V. 61, Iss. 2. P. 287-292. doi: 10.3103/S1068799818020198
  5. Zuev Y.V., Lepeshinskii I.A., Guzenko A.A. Influence of particle inertance on motion characteristics of a two-phase jet. Russian Aeronautics. 2015. V. 58, Iss. 2. P. 210-214. doi: 10.3103/S1068799815020129
  6. Zaripov T.S., Gil’fanov A.K. A combined method for calculating the trajectories of suspended particles. Russian Aeronautics. 2016. V. 59, Iss. 4. P. 536-542. doi: 10.3103/S1068799816040152
  7. Lemiale V., King P.C., Rudman M., Prakash M., Cleary P.W., Jahedi M.Z., Gulizia S. Temperature and strain rate effects in cold spray investigated by smoothed particle hydrodynamics. Surface and Coatings Technology. 2014. V. 254. P. 121-130. doi: 10.1016/j.surfcoat.2014.05.071
  8. Ryazanov A.I. Mathematical model and numerical solution of the process of heating and melting of a traveling cylinder fed into a rocket chamber. ARPN Journal of Engineering and Applied Sciences. 2014. V. 9, Iss. 10. P. 1859-1865.
  9. Osnovy teorii i rascheta zhidkostnykh raketnykh dvigateley / pod red. V.M. Kudryavtseva [Fundamentals of theory and calculation of liquid-propellant rocket engines / ed. by V.M. Kudryavtsev]. V. 2. Moscow: Vysshaya Shkola Publ., 1993. 368 p.
  10. Kuz’min V.A., Maratkanova E.I., Zagrai I.A., Rukavishnikova R.V. Simulation of thermal radiation emitted by heterogeneous combustion products in the combustion chamber of a model engine. Russian Aeronautics. 2016. V. 59, Iss. 1. P. 100-106. doi: 10.3103/S1068799816010165
  11. Mikheev M.A., Mikheeva I.M. Osnovy teploperedachi [Principles of heat transfer]. Moscow: Energiya Publ., 1977. 344 p.
  12. Pervyshin A.N. Osnovy proektirovaniya generatorov sverkhzvukovykh struy produktov sgoraniya gazoobraznykh topliv i ikh tekhnologicheskoe ispol'zovanie. Dis. … doktora tekhn. nauk [Fundamentals of designing generators of gaseous propellant combustion products supersonic jets and their technological application]. Samara, 2004. 234 p.
  13. Barvinok V.A., Bogdanovich V.I. Physical and mathematical simulation of the formation of mesostructure-ordered plasma coatings. Technical Physics. 2012. V. 57, Iss. 2. P. 262-269. doi: 10.1134/S1063784212020053
  14. Egorychev V.S. Teoriya, raschet i proektirovanie raketnykh dvigateley: elektron. ucheb. posobie [Theory, calculation and design of rocket engines]. Samara: Samara State Aerospace University Publ., 2011. Available at: https://repo.ssau.ru/handle/Uchebnye-posobiya/Teoriya-raschet-i-proektirovanie-raketnyh-dvigatelei-Elektronnyi-resurs-elektron-ucheb-posobie-54624
  15. Egorov I.N., Kretinin G.V., Leshchenko I.A. Robust design optimization strategy of IOSO technology. Proceedings of the Fifth World Congress on Computational Mechanics (July, 7-12, 2002, Vienna, Austria).
  16. Nekhoroshev M., Orlov M., Ryazanov A. Using a parametric 3D assembly of a GTE combustion chamber to quickly generate its computed sector. MATEC Web of Conferences. 2018. V. 224. doi: 10.1051/matecconf/201822404010
  17. Zubanov V., Volkov A., Matveev V., Popov G., Baturin O. Optimization of fuel two-stage screw centrifugal pump of rocket powerful turbopump unit. Proceedings of the ASME Turbo Expo (June, 11-15, 2018, Oslo, Norway). V. 2B-2018. doi: 10.1115/GT2018-76400

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies