Calculation of hydrodynamic noise in the diffuser of a pulsation damper flow channel


Cite item

Full Text

Abstract

This article deals with the problem of hydrodynamic noise inside a fluid pressure vibration absorber. The calculation of hydrodynamic noise is based on the results of numerical simulation of fluid flow in the central duct of the vibration absorber. A complete system of hydrodynamics equations is solved with the help of a large eddy simulation turbulence model (LES).

About the authors

G. M. Makaryants

Samara State Aerospace University

Author for correspondence.
Email: georgy.makaryants@gmail.com

Candidate of Science (Engineering), Associate Professor

Department of Automatic Systems of Power Plants

Russian Federation

S. A. Gafurov

Samara State Aerospace University

Email: sa.gafurov@gmail.com

Assistant

Department of Automatic Systems of Power Plants

Russian Federation

I. A. Zubrilin

Samara State Aerospace University

Email: zubrilin416@mail.ru

Postgraduate student

Department of Heat Engineering and Heat Engines

Russian Federation

A. N. Kryuchkov

Samara State Aerospace University

Email: kan@ssau.ru

Doctor of Science (Engineering), Professor

Department of Automatic Systems of Power Plants

Russian Federation

Ye. V. Shakhmatov

Samara State Aerospace University

Email: shakhm@ssau.ru

Doctor of Science (Engineering), Professor

Head of the Department of Power Unit Control Systems

Russian Federation

E. G. Berestovitsky

Concern AVRORA Scientific and Production Association Join Stock Company

Email: berest40@mail.ru

Doctor of Science (Engineering)

Senior Researcher, Chief Expert in Acoustics, Head of Laboratory, Centre of Design and Testing of Electrohydraulic Equipment

Russian Federation

Yu. A. Gladilin

JSC "Concern" NPO "Aurora"

Email: gladilin_01@mail.ru

Candidate of Science (Engineering), Associate Professor

Specialist in Noise and Vibration

Russian Federation

References

  1. Bezyasychny V.V., Popkov V.I. Application of energy methods for localization of sources and determination of vibration-isolating efficiency of three-dimensional system, International congress on intensity techniques. CETIM. – Senlis (France), 1990. P. 411-416.
  2. Garnovskii N.N. Teoreticheskie osnovy elektroprovodnoy svyazi [Theoretical foundations of conductive connection]. Part 1. Moscow: Svyaz'izdat Publ., 1956. 390 p.
  3. Kim J.A., Budrin S.V., Selezskij A.I. Effect of the installation location in pipelines of soundproof facilities on their efficiency // Voprosy sudostroeniya. Ser. SJeU. 1981. P. 71-76. (In Russ.)
  4. Nikiforov A.S., Ryleeva T.V. Designs of flow noise // Voprosy sudostroeniya. Ser. “Proektirovanie korabley”. 1978. V. 15. P. 71-76. (In Russ.)
  5. Igolkin A.A., Kryuchkov A.N., Makaryants G.M., Prokofiev, A.B., Prokhorov S.P., Shakhmatov E.V., Shorin V.P. Snizhenie kolebaniy i shuma v pnevmogidromekhanicheskikh sistemakh [Reducing vibrations and noise in pneumo/hydraulic/mechanical systems]. Samara: SNC RAN Publ., 2005. 314 p.
  6. Shorin V.P. Ustranenie kolebaniy v aviatsionnykh truboprovodakh [Elimination of fluctuations in aviation pipelines]. Moscow: Mashinostroenie Publ., 1980. 156 p.
  7. Shorin V.P., Gimadiev A.G., Shakhmatov E.V. Designing dampers for hydraulic circuits control systems // Izv. AN SSSR. Energetika i transport. 1987. No 4. P. 127-133. (In Russ.)
  8. Shorin V.P., Gimadiev A.G., Shakhmatov E.V. Designing oscillation dampers for damping pressure pulsations in gas turbine engine control systems // Izv. VUZzov. Mashinostroenie. 1982. No 7. P. 65-68. (In Russ.)
  9. Golovin A.N., Brudkov L.I., Shorin V.P. Calculation of own characteristics of oscillation dampers for working fluid of the type of an acoustic low-pass filter //Vibratsionnaya prochnost i nadezhnost dvigateley i sistem letatelnykh apparatov. 1980. No 7. P. 36-43. (In Russ.)
  10. Golovin A.N. Transformer of active shock wave drug // Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Koroleva. 2003. V. 2. P. 336-342. (In Russ.)
  11. Shorin V.P., Sanchugov V.I. Designing oscillation dampers for hydraulic circuits of control systems //Izv. AN SSSR. Energetika i transport. 1978. No 2. P. 132-139. (In Russ.)
  12. Golovin A.N., Shestakov G.V. The structure of automated calculation of the pressure oscillation dampers // Dinamicheskie protsessy v silovykh i energeticheskikh ustanovkakh letatel'nykh apparatov. 1988. P. 20-25. (In Russ.)
  13. Bochkaryov S.K., Makaryantz G.M., Prokofiev A.B., Shakhmatov E.V. Modelling characteristics of pressure oscillation dampers with regard for the distribution of their parameters // Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Koroleva. 2007. No. 1(17). P. 148-155. (In Russ.)
  14. Belov G.O., Golovin A.N., Kruchkov A.N., Rodionov L.V., Shakhmatov E.V. Reaserching the processes of excitement and suppressions flow pulsation and dynamic noise in hydraulic systems // Izv. SNC RAN. 2011. V. 13, no 4. P. 178-184. (In Russ.)
  15. Berestovitsky Je.G., Gladilin Yu.A., Kryuchkov A.N., Fyodorov A.Ye., Frantov A.A., ShakhmatovYe.V. Pressure pulsation dampers as a means of improving the inherent vibroacoustic charateristics of hydraulic test rigs // Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Koroleva (nacional'nogo issledovatel'skogo universiteta). 2012. No. 2(33). P. 149-154. (In Russ.)
  16. Shakhmatov E.V., Kryuchkov A.N., Prokofiev A.B., Golovin A.N., Belov G.O. Using of pressure fluctuations absorber to reduce vibroacoustic loading of hydromechanical systems // Sudostroenie. 2011. No. 3. P. 45-47. (In Russ.)
  17. Igolkin A., Koh A., Kryuchkov A., Safin A., Shakhmatov, E. Pressure reducing valve noise reduction // 19th International Congress on Sound and Vibration 2012, ICSV 2012. P. 2458.
  18. Smol'yakov A.V. Shum turbulentnykh potokov [Noise in turbulent flows]. St. Petersburg: CNII im. akad. A.N. Krylova, 2005. 312 p.
  19. Smol'yakov A.V. Acoustic radiation intensity in a turbulent boundary layer on a plate // Acoustical Physics. 1973. V. 19, no. 2. P. 251-276.
  20. Smol'yakov A.V. Spectrum of quadruple radiation of a plane turbulent boundary layer // Acoustical Physics. 1973. V. 19, no. 3. P. 420-425.
  21. Smol'yakov A.V. A new model for the cross spectrum and wavenumber-frequency spectrum of turbulent pressure fluctuations in a boundary layer // Acoustical Physics. 2006. V. 52, no. 3. P.393-400. doi: 10.1134/S1063771006030146
  22. Kibicho K., Sayers A.T. Benchmark experimental data for fully stalled wide-angled diffusers // Journal of Fluids Engineering, Transactions of the ASME. 2008. V. 130, no. 10. Art. No. 104502 (4 p.) doi: 10.1115/1.2969270
  23. Kibicho K., Sayers A.T. Experimental measurements of the mean flow field in wide-angled diffusers: adata bank contribution // International Journal of Engineering and Applied Sciences. 2009. 5:8. P. 487-492.
  24. Keerthana R., Jamuna Rani G. Flow analysis of annular diffusers // International Journal of Engineering Research and Applications (IJERA). 2012. V. 2, is. 3. P.2348–2351.
  25. Vujičić M., Crnojević C. Calculation of the separation point for the turbulent flow in plane diffusers // Mechanics, Automatic Control and Robotics. 2003. V. 3, no.15. P. 1001–1006.
  26. Iaccarino G.Prediction of the turbulent flow in a diffuser with commercial CFD codes //Center for Turbulence Research Annual Research Briefs. 2000. P. 271–278.
  27. Prakash R., Mahalakshmi N.V. Experimental investigations of flow through annular diffuser with and without struts // European Journal of Scientific Research. 2011. V. 52, no. 3. P. 366–384.
  28. Gravemeier V. Variational multiscale large eddy simulation of turbulent flow in a diffuser // Computational Mechanics. 2007. V. 39, is. 4. P. 477–495. doi: 10.1007/s00466-006-0044-y
  29. Sparrow E.M., Abraham J.P., Minkowycz W.J. Flow separation in a diverging conical duct: Effect of Reynolds number and divergence angle //International Journal of Heat and Mass Transfer. 2009. V. 52, is. 13-14. P. 3079–3083. doi: 10.1016/j.ijheatmasstransfer.2009.02.010
  30. Sagar D., Paul A.R., Jain A. Experimental investigations of flow computational fluid dynamics investigation of turbulent separated flows in axisymmetric diffusers //International Journal of Engineering, Science and Technology. 2011. V. 3, no.2. P. 104–109.
  31. Nicoud F., Ducros F. Subgrid-Scale Stress Modelling Based on the square of the velocity gradient tensor // Flow, Turbulence, and Combustion. 1999. V. 62, no.3. P. 183–200. doi: 10.1023/A:1009995426001
  32. Pope S.B. Turbulent flows. Cambridge: Cambridge Univ. Press, 2000. 771 p.
  33. Monin A.S., Jaglom A.M. Statisticheskaya gidromekhanika. Teoriya turbulentnosti. T. 1. Teoriya turbulentnosti [Statistical fluid mechanics. Theory of turbulence. V. 1. Theory of turbulence]. St. Petersburg: Gidrometeoizdat Publ., 1992. 694 p.
  34. Schlichting H. Boundary layer theory, 7th Edition, 1979.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 VESTNIK of the Samara State Aerospace University