Методика моделирования рабочего процесса двухступенчатого насоса с гидроприводом первой ступени

В. Н. Матвеев, Л. С. Шаблий, А. В. Кривцов, В. М. Зубанов, А. И. Иванов, И. П. Косицын, Н. В. Батурин

Аннотация


Описана методика CFD-моделирования двухступенчатого насоса высокого давления, отличительной особенностью которого является гидравлический привод ступени низкого давления турбиной, отбирающей энергию от потока высокого давления, скорость вращения которой определяется балансом мощностей ротора низкого давления. Техника моделирования, представленная в работе, содержит два основных преимущества по сравнению с известными работами. Первой особенностью является определение скорости вращения во время CFD-расчёта по специальной методологии. Второй особенностью является моделирование кавитации для оценки её влияния на рабочий процесс преднасоса при довольно низком входном давлении и переменной скорости вращения ротора. Важной частью описываемой техники моделирования являются рекомендации по использованию программного обеспечения (ANSYS CFX, NUMECA AutoGrid5, ANSYS ICEM CFD): выбор области моделирования, сеткогенерация, выбор моделей турбулентностей, проверка сходимости, пост-обработка результатов. Адекватность CFD-модели оценивалась сравнением расчётных характеристик с экспериментальными, полученными на испытательной установке. Полученная методика моделирования насоса с помощью CFD-инструментов будет использована в дальнейшем с целью модернизации лопаточной части насоса для увеличения производительности.


Ключ. слова


Насос двухступенчатый; CFD-моделирование; гидропривод; согласование работ ступеней

Полный текст:

PDF

Список литературы

1. Андронов А.Л. Особенности работы центробежных насосов и требования к их электроприводу // Ползуновский Альманах. 2004. № 1. С. 150-152.

2. Чванов В.К., Кашкаров А.М., Ромасенко Е.Н., Толстиков Л.А. Турбонасосные агрегаты ЖРД НПО «Энергомаш» // Конверсия в машиностроении. 2006. № 1 (74). С. 15-21.

3. Зубанов В.М., Шаблий Л.С. CFD-моделирование процессов в насосе высокого давления окислителя турбонасосного агрегата жидкостного ракетного двигателя // Вестник Самарского государственного аэрокосмического университета имени С.П. Королёва (национального исследовательского университета). 2014. № 5 (47), ч. 1. С. 148-153.

4. ANSYS ICEM CFD User Guide, 2011, ANSYS Inc.

5. Numeca FINE/Turbo User’s Guide, 2012, Numeca Inc.

6. ANSYS CFX-Solver Modeling Guide, 2011, ANSYS Inc.

7. Benigni H., Jaberg H., Yeung H., Salisbury T., Berry O., Collins T. Numerical simu-lation of low specific speed American petroleum institute pumps in part-load operation and comparison with test rig results // Journal of Fluids Engineering. 2012. V. 134, Iss. 2. Article number 024501. DOI: 10.1115/1.4005769

8. Pinho J., Lema M., Rambaud P., Steelant J. Multiphase investigation of water ham-mer phenomenon using the full cavitation model // Journal of Propulsion and Power. 2014. V. 30, Iss. 1. P. 105-113. DOI: 10.2514/1.b34833

9. Saurel R., Petitpas F., Abgrall R. Modelling phase transition in metastable liquids: Application to cavitating and flashing flows // Journal of Fluid Mechanics. 2008. V. 607. P. 313-350. DOI: 10.1017/s0022112008002061

10. Porca P., Lema M., Rambaud P., Steelant J. Experimental and numerical multiphase-front fluid hammer // Journal of Propulsion and Power. 2014. V. 30, Iss. 2. P. 368-376. DOI: 10.2514/1.b34832

11. Singhal A.K., Athavale M.M., Li H., Jiang Y. Mathematical basis and validation of the full cavitation model // Journal of Fluids Engineering. 2002. V. 124, Iss. 3. P. 617-624. DOI: 10.1115/1.1486223

12. Ding H., Visser F.C., Jiang Y., Furmanczyk M. Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applica-tions // Journal of Fluids Engineering. 2011. V. 133, Iss. 1. Article number 011101. DOI: 10.1115/1.4003196

13. Li H.Y., Singhal A.K., Athavale M.M., Jiang Y.U. Application of the full cavitation model to pumps and inducers // International Journal of Rotating Machinery. 2002. V. 8, Iss. 1. P. 45-56. DOI: 10.1080/10236210211852

14. Кулагин В.А., Пьяных Т.А. Исследование кавитационных течений средствами математического моделирования // Журнал Сибирского федерального университета. Серия: Техника и Технологии. 2012. Т. 5, № 1. С. 57-62.

15. Константинов С.Ю., Целищев Д.В. Исследование и совершенствование чис-ленных моделей кавитационного массопереноса // Вестник Уфимского государственного авиационного технического университета. 2013. Т. 17, № 3 (56). С. 123-129.

16. Rhee S.H., Kawamura T., Li H. Propeller cavitation study using an unstructured grid based Navier-Stoker solver // Journal of Fluids Engineering. 2005. V. 127, Iss. 5. P. 986-994. DOI: 10.1115/1.1989370


DOI: http://dx.doi.org/10.18287/2541-7533-2016-15-4-102-113

Ссылки

  • Ссылки не определены.


 

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 International License.

 

ISSN: 2541-7533