Evaluation of the influence of the number of blades and diameter on propeller noise


Cite item

Full Text

Abstract

The article presents the results of computational and experimental research of the effect of the number of blades and the diameter on the noise of the propeller operating at Reynolds numbers of more than 106. It is shown that an increase in the number of blades while maintaining the aerodynamic and geometric similarity of the propellers and constant Mach number of the circumferential velocity leads to significant reduction of aerodynamic load noise. At the same time the displacement noise and the broadband noise increase insignificantly. Expressions are proposed that can be used to assess the effect of the diameter and the number of blades on the tonal noise and the noise of the trailing edge of the propeller provided the propeller thrust is constant. Measurements of the acoustic characteristics of light aircraft Yak-18T with two- and three-bladed propellers, MAI-223M and the F30, performed at the local aerodrome in static conditions qualitatively confirmed the estimates of the effect of the diameter and number of blades on the propeller noise. Increasing the number of blades leads to a noticeable decrease in the acoustic efficiency of engine-propeller power plants.

About the authors

P. A. Moshkov

Central Institute of Aerohydrodynamics named after N.E. Zhukovsky, Zhukovsky

Author for correspondence.
Email: moshkov89@bk.ru

engineer

Russian Federation

V. F. Samokhin

Central Institute of Aerohydrodynamics named after N.E. Zhukovsky, Zhukovsky

Email: samohin_vf@mail.ru

Doctor of Science (Engineering), Senior Research Associate

Russian Federation

References

  1. Zlenko N.A., Kedrov A.V., Kishalov A.N. Optimal Aeroacoustic Propeller Design. TsAGI Science Journal. 2011. V. 42, Iss. 6. P.829-844. doi: 10.1615/TsAGISciJ.2012004802
  2. Kedrov A.V., Kishalov A.N. Formulation of the propeller aeroacoustic design problem. Trudy TsAGI. 1989. Iss. 2508. P. 46-54. (In Russ.)
  3. Gur O., Rosen A. Optimization of propeller based propulsion system. 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Schaumburg (USA), 2008. doi: 10.2514/6.2008-1977
  4. Gur O., Rosen A. Multidisciplinary design optimization of a quiet propeller. 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference). Vancouver (Canada), 2008. doi: 10.2514/6.2008-3073
  5. Pagano A., Frederico L., Barbarino M., Aversano M. Multi-objective aeroacoustic optimization of an aircraft propeller. 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Victoria (Canada), 2008. doi: 10.2514/6.2008-6059
  6. Pagano A., Barbarino M., Casalino D., Frederico L. Tonal and broadband noise calculations for aeroacoustic optimization of propeller blades in a pusher configuration. 15th AIAA/CEAS Aeroacoustics Conference. Miami (USA), 2009. DOI: 0.2514/6.2009-3138
  7. Lefebvre T., Canard S., Le Tallec C., Beaumier P., David F. ANIBAL: A new aero-acoustic optimized propeller for light aircraft applications. 27th Congress of the International Council of the Aeronautical Sciences 2010, ICAS 2010. 2010. V. 4. P. 2705-2719.
  8. Moshkov P.A., Samokhin V.F. Evaluation of the influence of diameter propeller on the acoustics characteristic of the power plant by the light aircraft. Vestnik SibGAU. 2016. V. 17, no. 1. P. 154-160. (In Russ.)
  9. Moshkov P.A. Prognozirovanie i snizhenie shuma na mestnosti legkikh vintovykh samoletov. Diss. … cand. tekhn. nauk [Prediction and reduction of light propeller-driven aircraft community noise. Cand. Sci. (Eng.) Diss.]. Moscow, 2015. 143 p.
  10. Hubbard H.H. Aeroacoustics of flight vehicles: Theory and Practice. V. 1: Noise sources. NASA References Publication 1258, 1991.
  11. Hanson D.B. Influence of propeller design parameters on far field harmonic noise in forward flight. AIAA Journal. 1980. V. 18, Iss. 11. P. 1313-1319. doi: 10.2514/3.50887
  12. Standard AIR 1407. Prediction procedure for near-field and far-field propeller noise. SAE International, 1977. 21 p.
  13. Rukovodstvo po tekhnicheskoy ekspluatatsii samoleta «MAI-223M» [Operations manual for «MAI-223 M» aircraft]. Moscow. Moscow Aviation Institute Publ., 2013. 138 p.
  14. Lapshin A.M., Anokhin P.I. Aviatsionnyy dvigatel' M-14P: uch. posobie dlya letnykh uchilishch [Aircraft engine M-14P: Manual for flight schools]. Moscow: Transport Publ., 1976. 228 p.
  15. Flight manual. «F30 Brio». F. G. model. 147 p.
  16. Samokhin V.F. An approach to the calculation of the propeller distant acoustic field. Trudy TsAGI. 1988. Iss. 2355. P. 65-75. (In Russ.)
  17. Samokhin V.F. Semiempirical method for estimating the noise of a propeller. Journal of Engineering Physics and Thermophysics. 2012. V. 85, no. 5. P. 1157-1166. doi: 10.1007/s10891-012-0758-y
  18. Brooks T.F., Pope D.S., Marcolini M.A. Airfoil self-noise and prediction. NASA References Publication 1218, 1989.
  19. Hubbard H.H., Shepard K.P. Wind Turbine Acoustics. NASA Technical Paper 3057, 1990.
  20. Leslie A, Wong K.C., Auld D. Broadband noise reduction on a mini-UAV propeller. 14th AIAA/CEAS Aeroacoustics Conference. Vancouver (Canada), 2008. doi: 10.2514/6.2008-3069
  21. Gutin L.Ya. Acoustic field of a rotating propeller. Soviet physics: Technical Physics. 1936. V. 6, no. 5. P. 899-909.
  22. Gutin L.Ya. The sound of propeller rotation. Soviet physics: Technical Physics. 1942. V. 12, no. 2-3. P. 76-85.
  23. Aviatsionnaya akustika / pod red. A.G. Munina, V.E. Kvitki [Aviation acoustics. / ed. by A.G. Munin, V.E. Kvitka]. Mоscоw: Mashinostroenie Publ., 1973. 448 p.
  24. Moshkov P.A. Some results of the experimental research of acoustical characteristics power plant extralight aircraft in static conditions. Scientific and Technical Volga region Bulletin. 2014. No. 6. P. 265-270. (In Russ.)
  25. Samokhin V.F., Moshkov P.A. Experimental research of acoustical characteristics by power plant of aircraft «An-2» in static conditions. Trudy MAI. 2015. No. 82. P. 17. (In Russ.)
  26. Samokhin V.F., Moshkov P.A. Acoustic characteristics of an easy propeller airplane with internal combustion engines. Trudy MAI. 2012. No. 57. P. 6. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 VESTNIK of Samara University. Aerospace and Mechanical Engineering

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies