MATHEMATICAL MODEL OF HOSTING OF VIRTUAL MACHINES ON PHYSICAL SERVERS OF COMPUTER NETWORKS


Cite item

Abstract

Transition to a digital economics leads to global introduction of IT-technology and computer engineering in every sphere of economic activity. In turn, it is related to growth of the cost for creating local networks. Size of material costs for introducing high-scale IT-projects is not always comparable to company’s financial potential. One of the methods to solve this problem is introduction of virtualization technologies into the manufacturing process, concretely speaking, organization of IT-system’s functioning on virtual machines network. In this paper, basic terms in the field of virtualization are reviewed; also, a brief description of optimal virtual machines’ hosting problem is given. Paper discloses informative formulation of the problem that serve as the basis of the model of virtual machines hosting on computer networks’ physical servers. In addition, group of authors give various algorithms of solving the problem.

About the authors

Vladimir M. Montlevich

Samara National Research University

Author for correspondence.
Email: vlmont@mail.ru
ORCID iD: 0000-0001-8799-8974

Candidate of Physical and Mathematical Sciences, associate professor of the Department of Mathematics and Business Informatics

Russian Federation

Alexander D. Popov

Samara National Research University

Email: alexpopov1641@gmail.com
ORCID iD: 0000-0002-0732-3473

Master's Degree Student of the Department of Mathematics and Business Informatics

Russian Federation

References

  1. Korolyov O.L., Gavrikov I.V., Smirnov A.D. The economic role of virtualization in information systems. International scientific review, 2017, no. 5, pp. 36–39. Available at: https://www.elibrary.ru/
  2. item.asp?id=(In Russ.)
  3. Solovyov V.P., Udovichenko A.O. Planning method of virtual machines’ group hosting with redistribution of resources. Programmnye produkty i sistemy = Software & systems, 2012, no. 1, pp. 134–138. Available at: https://cyberleninka.ru/article/n/metod-planirovaniya-razmescheniya-gruppy-virtualnyh-mashin-s-pereraspre
  4. deleniem-resursov. (In Russ)
  5. Rakhman P.A. Conceptual approach for efficiency of using computing resources in corporate network with virtual machines’ technology application. Ob"edinennyy nauchnyy zhurnal, 2005, no. 2, pp. 59–67. Available at: https://bugtraq.ru/library/internals/.keep/vminfra1.pdf. (In Russ.)
  6. Vorozhtsov A.S., Tutova N.V., Tutov A.V. The technique of virtual server placement in data centers. T-Comm, 2015, vol. 9, no. 7, pp. 5–10. Available at: https://www.elibrary.ru/item.asp?id=24195883. (In Russ.)
  7. Vorobyev A.A., Dang S.B. Formalizating the optimization problem of virtual machines allocation network resources distribution in cloud computing systems. Sistemy upravleniya i informatsionnye tekhnologii, 2016,
  8. no. (65), pp. 28–32. Available at: https://www.elibrary.ru/item.asp?id=26539045. (In Russ.)
  9. Fault tolerant clustering in Windows Server. Available at: https://docs.microsoft.com/ru-ru/windows-server/failover-clustering/failover-clustering-overview, free access mode. (In Russ.)
  10. Palchevkiy Ye.V., Khalikov A.R. Uniform multisequencing of the network load on physical servers of the cluster. In: Topical issues of modern scientific research: materials of the International research and practical conference, 2017, no. 1, pp. 119–122. Available at: http://science-peace.ru/files/AVSNI_2017.pdf. (In Russ.)
  11. Finkelshtein Yu.Yu. Approximate methods and applied tasks of discrete programming. Moscow: Nauka, 1976, 265 p. (In Russ.)
  12. Sigal I.Kh., Ivanova A.P. Introduction to applied discrete programming: models and computational algorithms: textbook. Moscow: FIZMATLIT, 2003, 240 p. (In Russ.)
  13. Esikov D.O. Evaluating the effectiveness of sustainability problem solving methods of distributed information system functioning. Programmnye produkty i sistemy = Software & systems, 2017, no. 2, pp. 241–256. Available at: https://cyberleninka.ru/article/n/otsenka-effektivnosti-metodov-resheniya-zadach-obespecheniya-ustoychivosti-funktsionirovaniya-raspredelennyh-informatsionnyh. (In Russ.)
  14. Khachaturov V.R. The combinatoric-approximation method and some of its applications. USSR Computational Mathematics and Mathematical Physics, 1974, vol. 14, issue 6, pp. 90–112. DOI: https://doi.org/10.1016/0041-5553(74)90172-4. (In Russ.)
  15. Khachaturov V.R. Mathematical methods of regional programming. Moscow: Nauka, 1989, 302 p. (In Russ.)
  16. Montlevich V.M. The plant location problem enterprises with discrete capacities and indivisible customers. Computational Mathematics and Mathematical Physics, 2000, vol. 40, no. 10, pp. 1430–1446. Available at: http://mi.mathnet.ru/eng/zvmmf1433. (In Russ.)

Copyright (c) 2020 Владимир Михайлович Монтлевич, Александр Денисович Попов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies