The bistable Duffing oscillator in discrete time


Cite item

Full Text

Abstract

The dynamics of an oscillatory system with a soft cubic-nonlinear return force – a bistable Duffing oscillator, in discrete time are consider. The mathematical analysis is based on a continuous-time model in the form of the Duffing equation. The transition to discrete time in the equation is performed using the Green function of linear oscillations in the vicinity of the minima of the bistable potential. This approach to sampling allowed us to introduce a new version of a nonlinear dynamic system – the bistable discrete Duffing oscillator. It is shown that the bistable discrete Duffing oscillator adequately reproduces the characteristics of regular and chaotic oscillations of the analog prototype.

About the authors

V.V. Zaitsev

Samara National Research University

Author for correspondence.
Email: zaitsev@samsu.ru

References

  1. Kovacic I., Brennan M.J. The Duffing Equation: Nonlinear Oscillators and their Behavior. New York: John Wiley & Sons, 2011, 386 p. Hayashi C. Nonlinear Oscillations in Physical Systems. New York: McGraw-Hill, 1964, 432 p. Kuznetsov A.P., Kuznetsov S.P., Ryskin N.M. Nonlinear Vibrations. 2nd ed. Moscow: Fizmatlit, 2005, 292 p. (In Russ.)Landa P.S. Nonlinear Waves. 2nd ed. Moscow: Librokom, 2010, 552 p. (In Russ.)Moon F.C., Holmes P.J. A magnetoelastic strange attractor. J. Sound Vibration, 1979, vol. 65, no. 2, pp. 275–296. DOI: https://doi.org/10.1016/0022-460X(79)90520-0.Moon F.C. Chaotic Vibrations. New York: John Wiley & Sons, 1987, 312 p. Guckenheimer J., Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. 5th ed. Berlin: Springer-Verlag, 1996, 462 p. Horsthemke W., Lefever R. Noise-Induced Transitions. Berlin: Springer-Verlag, 2006, 318 p. Anischenko V.S. et al. Stochastic resonance noise enhanced order. UFN, 1999, vol. 169, no. 1, pp. 7–38. (In Russ.)Zajtsev V.V., Shilin A.N., Judin A.N. Showing Duffing oscillator in discrete time. Physics of Wave Processes and Radio Systems, 2014, vol. 17, no. 2, pp. 40–43. (In Russ.)Mischenko E.F. et al. The Many Faces of Chaos. Moscow: Fizmatlit, 2012, 429 p. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Zaitsev V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ФС 77 - 68199 от 27.12.2016.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies