Multi-sensory microwave photonic address measuring system for intestinal manometry
- Authors: Agliullin A.1, Purtov V.2, Sakhabutdinov A.3, Nureev I.3, Tyazhelova A.3, Sarvarova L.3, Vasiliev S.4, Kurbiev I.5, Proskuryakov A.5, Kadushkin V.5
-
Affiliations:
- LLC «Research and Production Firm MFS»
- LLC «Infocom-SPb»
- Kazan National Research Technical University named after A.N. Tupolev - KAI
- JSC «Scientific and Production Concern «Engineering Technologies»
- LLC «NPK Sensorika»
- Issue: Vol 22, No 4 (2019)
- Pages: 163-174
- Section: Articles
- URL: https://journals.ssau.ru/pwp/article/view/7672
- DOI: https://doi.org/10.18469/1810-3189.2019.22.4.163-174
- ID: 7672
Cite item
Full Text
Abstract
Solutions for a multi-sensor catheter in high resolution manometry based on classical interrogation with wave separation of fiber optic sensors or their polyharmonic probing already exist. Measuring systems based on interrogating arrays of the same type of Bragg gratings by the method of interference with a frequency shift and spatial separation of obtaining information from each grating separately, although their spatial resolution is slightly lower than required, are proposed. The indicated type of solutions requires expensive tunable lasers or narrow-band filters, and frequency-shifted interference, including two-frequency, with a microwave photonic interrogation method, entails the construction of an extremely complex interferometric optoelectronic circuit with the need to ensure its stable operation. Supplementing the task with the requirement to simplify and reduce the cost of the system as much as possible by means of microwave photonic sensing methods and using an array of structured gratings or gratings with phase shift in the system, and, finally, addressable fiber Bragg gratings, which we are actively developing, we will get a complete statement of the problem of constructing a multi-sensor catheter for intestinal manometry. The results of these task solutions are presented in this article.
About the authors
A.F. Agliullin
LLC «Research and Production Firm MFS»
Author for correspondence.
Email: mfsmed@mail.ru
V.V. Purtov
LLC «Infocom-SPb»
Email: purvad@mail.ru
A.Zh. Sakhabutdinov
Kazan National Research Technical University named after A.N. Tupolev - KAI
Email: kazanboy@yandex.ru
I.I. Nureev
Kazan National Research Technical University named after A.N. Tupolev - KAI
Email: n2i2@mail.ru
A.A. Tyazhelova
Kazan National Research Technical University named after A.N. Tupolev - KAI
Email: lina.tyazhelova@mail.ru
L.M. Sarvarova
Kazan National Research Technical University named after A.N. Tupolev - KAI
Email: sarvarova.54@mail.ru
S.V. Vasiliev
JSC «Scientific and Production Concern «Engineering Technologies»
Email: info@tecmash.ru
I.U. Kurbiev
LLC «NPK Sensorika»
Email: kurbiev@yandex.ru
A.D. Proskuryakov
LLC «NPK Sensorika»
Email: aproskur@yandex.ru
V.V. Kadushkin
LLC «NPK Sensorika»References
- Poeggel S. et al. Optical fibre pressure sensors in medical applications. Sensors, 2015, vol. 15, pp. 17115–17148. DOI: https://doi.org/10.3390/s150717115.Lekholm A., Lindström L. Optoelectronic transducer for intravascular measurements of pressure variations. Med. Biol. Eng, 1969, vol. 7, pp. 333–335. Lindström L.H. Miniaturized pressure transducer intended for intravascular use. IEEE Trans. Biomed. Eng, 1970, vol. BME-17, pp. 207–219. DOI: https://doi.org/10.1109/TBME.1970.4502735.Matsumoto H. et al. The development of a fibre optic catheter tip pressure transducer. J. Med. Eng. Technol, 1978, vol. 2, pp. 239–242. DOI: https://doi.org/10.3109/03091907809161807.Faria J.B. A theoretical analysis of the bifurcated fiber bundle displacement sensor. IEEE Trans. Instrum. Meas, 1998, vol. 47, no. 3, pp. 742–747. DOI: https://doi.org/10.1109/19.744340.Brandao Faria J. Modeling the Y-branched optical fiber bundle displacement sensor using a quasi-Gaussian beam approach. Microw. Opt. Technol. Lett, 2000, vol. 25, pp. 138–141. Crenshaw A.G. et al. A new «transducer-tipped» fiber optic catheter for measuring intramuscular pressures. J. Orthop. Res, 1990, vol. 8, pp. 464–468. DOI: https://doi.org/10.1002/jor.1100080318.Roriz P. et al. Fiber optic intensity-modulated sensors: A review in biomechanics. Photonic Sens, 2012, vol. 2, pp. 315–330. DOI: https://doi.org/10.1007/s13320-012-0090-3.Morozov O.G. et al. Amplitudno-fazovye metody formirovanija zondirujuschih izluchenij dlja sistem analiza volokonno-opticheskih struktur. Fizika volnovyh protsessov i radiotehnicheskie sistemy, 2007, vol. 10, no. 3, pp. 119–124. [In Russian].Morozov O.G. Amplitude and phase frequency conversion in systems time and frequency domain reflectometry optical fiber and measuring information networks. Fizika volnovyh protsessov i radiotehnicheskie sistemy, 2004, vol. 7, no. 1, pp. 63–71. [In Russian].Morozov O.G., Ajbatov D.L., Sadeev T.S. Synthesis of the dual-frequency radiation and its use in fiber optic systems, distributed and multiplexed measurements. Fizika volnovyh protsessov i radiotehnicheskie sistemy, 2010, vol. 13, no. 3, pp. 84–91. [In Russian].Kuprijanov V.G. et al. Fiber-optic technology in distributed environmental monitoring systems. Izvestija Samarskogo nauchnogo tsentra Rossijskoj akademii nauk, 2011, vol. 13, no. 4 (4), pp. 1087–1091. [In Russian].Kurevin V.V. et al. Structural minimization volokonno-optical sensor for environmental monitoring networks. Infokommunikatsionnye tehnologii, 2009, vol. 7, no. 3, pp. 46–52. [In Russian].Morozov O.G., Stepuschenko O.A., Sadykov I.R. Modulyatsionnye measurement techniques in optical biosensors refractometric type based on fiber Bragg gratings with a phase shift. Vestnik Povolzhskogo gosudarstvennogo tehnologicheskogo universiteta. Serija: Radiotehnicheskie i infokommunikatsionnye sistemy, 2010, no. 3, pp. 3–13. [In Russian].Sadykov I.R. et al. Fiber-optic sensor refractometric. Trudy MAI, 2012, no. 61, URL: http://trudymai.ru/published.php?ID=35667. [In Russian].Stepustchenko O.A. et al. Opticаl refractometric FBG biosensors: problems of development and decision courses. Proc. SPIE, 2011, vol. 7992, p. 79920D. DOI: https://doi.org/10.1117/12.887282.Kuprijanov V.G. et al. Low-mode sensing sensors based on fiber Bragg gratings. Nauchno-tehnicheskij vestnik Povolzh’ja, 2013, no. 4, pp. 200–204. [In Russian].Aljushina S.G. et al. Fiber Bragg grating structure in a phased distributed information-measuring systems. Nelinejnyj mir, 2011, vol. 9, no. 8, pp. 522–528. [In Russian].Oliveira Silva S.F. de. Fiber Bragg Grating Based Structures for Sensing and Filtering. Porto: Porto University, 2007, 157 p. Dong X. Bend measurement with chirp of fiber Bragg grating. Smart Materials and Structures, 2001, vol. 10, no. 5, pp. 1111–1113. DOI: https://doi.org/10.1088/0964-1726/10/5/404.Dong X. Optical pulse shaping based on a double-phase-shifted fiber Bragg grating. Optoelectronics Letters, 2015, vol. 11, no. 2, pp. 100–102. DOI: https://doi.org/10.1007/s11801-015-5016-z.Morozov O.G., Sahabutdinov A.Zh. Addressable fiber Bragg structure in the quasi-distributed sensor systems radiophotons. Komp’juternaja optika, 2019, vol. 43, no. 4, pp. 535–543. DOI: https://doi.org/10.18287/2412-6179-2019-43-4-535-543. [In Russian].Sahabutdinov A.Zh. et al. Radiophotons differential accelerometer on two targeted fiber Bragg gratings. Foton-ekspress, 2019, no. 5 (157), pp. 7–15. [In Russian].Sakhabutdinov A.Zh. et al. Fiber-optic acceleration sensor on duplex fiber bragg structures. Journal of Computational and Engineering Mathematics, 2018, vol. 5, no. 4, pp. 16–32. DOI: https://doi.org/10.14529/jcem180402.Sahabutdinov A.Zh., Morozov O.G. polling procedure addressable dual fiber Bragg structures both sensors radiophotons system malosensornoy. Fizika volnovyh protsessov i radiotehnicheskie sistemy, 2018, vol. 21, no. 3, pp. 101–109. [In Russian].Morozov O.G. et al. Radiophotons two-frequency methods interrogatsii same type of fiber Bragg gratings, within the group. Fizika volnovyh protsessov i radiotehnicheskie sistemy, 2017, vol. 20, no. 2, pp. 21–34. [In Russian].Misbahov R.Sh. et al. Fiber Bragg grating with two phase shifts of both sensor and sensor networks multiplexing tool. Inzhenernyj vestnik Dona, 2017, no. 3 (46), URL: http://ivdon.ru/ru/magazine/archive/N3y2017/4343. [In Russian].Purtov V.V. et al. Optical vector network analyzer based on amplitude-phase modulation. Proc. SPIE, 2016, vol. 9807, p. 980717. DOI: https://doi.org/10.1117/12.2232993.Purtov V.V. et al. Microwave photonic polyharmonic probing for fiber optical telecommunication structures and measuring systems sensors monitoring. Proc. IEEE, 2017, vol. 10774, p. 107741J. DOI: https://doi.org/10.1117/12.2318738.Purtov V.V. et al. Radiophotons polyharmonic sensing broadband fiber-optic structures in telecommunication systems. Nelinejnyj mir, 2017, vol. 15, no. 6, pp. 40–48. [In Russian].Morozov O.G. et al. Evaluation of application possibilities of fiber Bragg gratings with reflection Gaussian profile as a temperature sensor. Vestnik Povolzhskogo gosudarstvennogo tehnologicheskogo universiteta. Serija: Radiotehnicheskie i infokommunikatsionnye sistemy, 2013, no. 2 (18), pp. 73–79. [In Russian].Purtov V.V., Agliullin T.A., Agliullin A.F. The role of the trainer in the training of endoscopic surgery. Povolzhskij onkologicheskij vestnik, 2016, no. 2, pp. 101–103. [In Russian].