An approximate solution for modes of curved optical fiber


Cite item

Full Text

Abstract

The paper presents an approximate analytical solution in closed form for the mode of a weakly guiding circular optical fiber with an arbitrary profile of the refractive index. The solution is valid for guided linearly polarized modes of arbitrary radial and azimuthal orders. The proposed solution is based on the joint application of the Gaussian approximation method and the stratification method, as well as the replacement of an optical fiber with a bending radius significantly exceeding the radius of the fiber, some direct optical fiber with an equivalent profile of the refractive index. The results of calculations for a typical refractive index profile of a multimode optical fiber with a core and cladding diameters of 50/125 are presented. It is shown that for the considered examples, the degree of influence of the bending radius on the propagation constant of the mode of a curved fiber waveguide increases with increasing mode order. And, in the range of changes in the bend radius of the fiber, in which the conditions for applying the proposed approximate analytical solution are fulfilled, the mode propagation constant due to the bending of the fiber changes insignificantly and we can assume that this change does not depend on the value of the bend radius.

About the authors

V.A. Burdin

Povolzhskiy State University of Telecommunications and Informatics

Author for correspondence.
Email: burdin@psati.ru

A.V. Bourdine

Povolzhskiy State University of Telecommunications and Informatics

Email: burdin@psati.ru

D.E. Praporshchikov

Povolzhskiy State University of Telecommunications and Informatics

Email: praporschikov-de@psuti.ru

References

  1. Marcuse D. Field deformation and loss caed by curvature of optical fibers. Journal of the Optical Society of America, 1976, vol. 66, no. 4, pp. 311–320. DOI: https://doi.org/10.1364/JOSA.66.000311.Petermann K. Microbending loss in monomode fibres. Electronics Letters, 1976, vol. 12, no. 4, pp. 107–109. DOI: https://doi.org/10.1049/el:19760084.Petermann K. Fundamental mode microbending loss in graded-index and W fibres. Optical and Quantum Electronics, 1977, vol. 9, no. 2, pp. 167–175. DOI: https://doi.org/10.1007/BF00619896.Gambling W.A., Matsumura H., Ragdale C.M. Curvature and microbending losses in single-mode optical fibres. Optical and Quantum Electronics, 1979, vol. 11, no. 1, pp. 43–59. DOI: https://doi.org/10.1007/BF00624057.Marcuse D. Influence of curvature on the losses of doubly clad fibers. Applied Optics, 1982, vol. 21, no. 23, pp. 4208–4213. DOI: https://doi.org/10.1364/AO.21.004208.Petermann K., Kuhne R. Upper and lower limits for the microbending loss in arbitrary single-mode fibers. Journal of Lightwave Technology, 1986, vol. 4, no. 1, pp. 2–7. DOI: https://doi.org/10.1109/JLT.1986.1074620.Schermer R.T., Cole J.H. Improved bend loss formula verified for optical fiber by simulation and experiment. IEEE Journal of Quantum Electronics, 2007, vol. 43, no. 10, pp. 899–909. DOI: https://doi.org/10.1109/JQE.2007.903364.Sillard P. et al. Micro-bend losses of trench-assisted single-mode fibers. 36th European Conference and Exhibition on Optical Communication, 2010, pp. 1–3. Schulze C. et al. Mode resolved bend loss in few-mode optical fibers. Optics Express, 2013, vol. 21, no. 3, pp. 3170–3181. DOI: https://doi.org/10.1364/OE.21.003170.Heiblum M., Harris J.H. Analysis of curved optical waveguides by conformal transformation. IEEE Journal of Quantum Electronics, 1975, vol. 11, no. 2, pp. 75–83. DOI: https://doi.org/10.1109/JQE.1975.1068563.Sakai J. Microbending loss evaluation in arbitrary-index single-mode optical fibers. Part I: Formulation and general properties. IEEE Journal of Quantum Electronics, 1980, vol. 16, no. 1, pp. 36–44. DOI: https://doi.org/10.1109/JQE.1980.1070350.Sakai J. Microbending loss evaluation in arbitrary-index single-mode optical fibers. Part II: Effects of core index profiles. IEEE Journal of Quantum Electronics, 1980, vol. 16, no. 1, pp. 44–49. DOI: https://doi.org/10.1109/JQE.1980.1070340.Lau K.Y. Propagation path length variations due to bending of optical fibers. The Telecommun. and Data Acquisition Rept, 1981, pp. 28–32. Valjaev A.B., Krivoshlykov S.G. Mode structure radiation into waveguides with random gradient axis microbending. Kvantovaja elektronika, 1989, vol. 16, no. 6, pp. 1248–1256. [In Russian].Menachem Z. Wave propagation in a curved waveguide with arbitrary dielectric transverse profiles. Progress in Electromagnetics Research, 2003, vol. 42, pp. 173–192. DOI: https://doi.org/10.2528/PIER03012303.Jiang Z., Marciante J.R. Mode-area scaling of helical-core, dual-clad fiber lasers and amplifiers using an improved bend-loss model. Journal of the Optical Society of America B, 2006, vol. 23, no. 10, pp. 2051–2058. DOI: https://doi.org/10.1364/JOSAB.23.002051.Shyroki D.M. Exact equivalent-profile formulation for bent optical waveguides. arXiv:physics/0605002, 2006, pp. 1–6. URL: https://arxiv.org/abs/physics/0605002.Shyroki D.M. Exact equivalent straight waveguide model for bent and twisted waveguides. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 2, pp. 414–419. DOI: https://doi.org/10.1109/TMTT.2007.914637.Rahman B.M.A. et al. Numerical analysis of bent waveguides: bending loss, transmission loss, mode coupling, and polarization coupling. Applied Optics, 2008, vol. 47, no. 16, pp. 2961–2970. DOI: https://doi.org/10.1364/AO.47.002961.Burdin V.A., Bourdine A.V., Praporshchikov D.E. Based on Gaussian approximation solution for arbitrary order guided mode of optical fiber with constant curvature. Proceedings of SPIE, 2014, vol. 9156, pp. 91560E. DOI: https://doi.org/10.1117/12.2054285.Snyder A.W. Understanding monomode optical fibers. Proceedings of the IEEE, 1981, vol. 69, no. 1, pp. 6–13. DOI: https://doi.org/10.1109/PROC.1981.11917.Love J.D., Hussey C.D. Variational approximations for higher-order modes of weakly-guiding fibers. Optical and Quantum Electronics, 1984, vol. 16, no. 1, pp. 41–48. DOI: https://doi.org/10.1007/BF00619876.Snajder A., Lav J. The Theory of Dielectric Waveguides. Moscow: Radio i svjaz’, 1987, 656 p. [In Russian].Burdin A.V., Burdin V.A. The solution for any guided mode circular optical fibers based on a Gaussian approximation method. Fizika volnovyh protsessov i radiotehnicheskie sistemy, 2011, vol. 14, no. 2, pp. 65–72. [In Russian].Clarricoats P.J.B., Chan K.B. Electromagnetic-wave propagation along radially inhomogeneous dielectric cylinders. Electronics Letters, 1970, vol. 6, no. 22, pp. 694–695. DOI: https://doi.org/10.1049/el:19700482.Arnold J.M. Stratification method in the numerical analysis of optical waveguide transmission parameters. Electronics Letters, 1977, vol. 13, no. 22, pp. 660–661. DOI: https://doi.org/10.1049/el:19770469.Gradshtejn I.S., Ryzhik I.M. Table of Integrals, Series and Products; 7th ed. Saint-Petersburg: BHV-Peterburg, 2011, 1232 p. [In Russian].Abramovits M., Stigan I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Moscow: Nauka, 1979, 832 p. [In Russian].Dvajt G.B. Tables of Integrals and Other Mathematical Formulas. Moscow: Nauka, 1977, 224 p. [In Russian].

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Burdin V., Bourdine A., Praporshchikov D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ФС 77 - 68199 от 27.12.2016.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies