Methods for solving incorrect tasks of electrodynamic analysis of radiating structures based on chiral metamaterials


Cite item

Abstract

This article is devoted to the development of correct methods for electrodynamic analysis of single and multi-element radiating structures with substrates of chiral metamaterials. An approach to the electrodynamic analysis of such antennas based on the method of singular integral representations of the field and the method of surface impedances is proposed. A system of singular integral equations with respect to unknown distribution functions of current density over emitters is obtained. The proposed method was tested using the example of solving a test problem using the Feko software package. The prospects of using such ICs in MIMO systems are shown, which make it possible to increase their efficiency, in particular, to increase throughput. The effect of azimuthal scattering of electromagnetic waves is also presented, which can be used to create low-profile antennas of subscriber radio communication stations installed on mobile objects.

About the authors

A.L. Buzov

JSC «Samara Innovative Business Radio Systems»

Author for correspondence.
Email: buzov@siprs.ru

D.S. Klyuev

Povolzhskiy State University of Telecommunications and Informatics

Email: klyuevd@yandex.ru

M.S. Kurushkin

The Military Academy of Strategic Rocket Troops after Peter the Great

Email: kurushkin-m-s@yandex.ru

A.M. Neshcheret

JSC «Samara Innovative Business Radio Systems»

Email: neshceret_a@list.ru

T.O. Usatenko

Military Training Center at Moscow Aviation Institute (National Research University)

Email: brat-sin@mail.ru

V.A. Kabanov

Povolzhskiy State University of Telecommunications and Informatics

Email: klyuevd@yandex.ru

References

  1. Deschamps G.A. Microstrip microwave antennas. The Third USAR Symposium on Antennas, 1953, vol. 1, pp. 189–195. Balanis C.A. Antenna Theory: Analysis and Design; 2nd ed. New York: John Wiley and Sons, Inc., 1997, pp. 722–783. Handbook of Microstrip Antenna. Ed. by J. James, P.S. Hall. London: P. Peregrinus on behalf of the Institution of Electrical Engineers, 1989, 1312 p. Xiang J. et al. A spectral domain approach for the calculation of the scattering of the stratified uniaxial electric anisotropic media under point source excitation with arbitrary orientation. International Journal of Applied Electromagnetics and Mechanics, 2015, vol. 48, no. 1, pp. 33–46. DOI: https://doi.org/10.3233/JAE-140145.Panchenko B.A. et al. Electrodynamic Calculation Stripline Antenna Characteristics. Moscow: Radio i svjaz’, 2002, 256 p. [In Russian].Prosvirin S.L., Nechaev Ju.B. Calculation of Microstrip Antennas in the Approximation of a Given Distribution of the Surface Current. Voronezh: Izd-vo VGU, 1992, 112 p. [In Russian].Panchenko B.A., Nefedov E.I. Microstrip Antenna. Moscow: Radio i svjaz’, 1986, 144 p. [In Russian].Dwivedi S., Mishra V., Kosta Y.P. Directivity enhancement of miniaturized microstrip patch antenna using metamaterial cover. International Journal of Applied Electromagnetics and Mechanics, 2015, vol. 47, no. 2, pp. 399–409. DOI: https://doi.org/10.3233/JAE-140060.Kenari M.A. Printed planar patch antennas based on metamaterial. International Journal of Electronics Letters, 2014, vol. 2, no. 1, pp. 37–42. DOI: https://doi.org/10.1080/21681724.2013.874042.Caloz C., Itoh T., Rennings A. CRLH metamaterial leaky-wave and resonant antennas. IEEE Antennas Propagation Magazine, 2008, vol. 50, no. 5, pp. 25–39. DOI: https://doi.org/10.1109/MAP.2008.4674709.Erentok A., Ziolkowski R.W. Metamaterial-inspired efficient electrically small antennas. IEEE Trans. on Antennas and Propagation, 2008, vol. 56, no. 3, pp. 691–707. DOI: https://doi.org/10.1109/TAP.2008.916949.Mao S.-G., Chen C.-M., Chang D.-C. Modeling of slow-wave EBG structure for printed-bowtie antenna array. IEEE Antennas and Wireless Propagation Letter, 2002, vol. 1, pp. 124–127. DOI: https://doi.org/10.1109/LAWP.2002.806049.Wang L., Wang L., Le-Wei L.J. A series-fed metamaterial microstrip antenna array of broadband and high-gain. 2012 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition, 2012, pp. 1–2. DOI: https://doi.org/10.1109/iWEM.2012.6320361.Badalov V.V. et al. Antenna systems based on characteristics of the study metamaterials to ensure electromagnetic compatibility radio communications. Antenny, 2017, no. 11, pp. 31–38. [In Russian].Alibakhshikenari M. et al. Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading. IEEE Access, 2019, vol. 7, pp. 23606–23614. DOI: https://doi.org/10.1109/ACCESS.2019.2899326.Bespalov A.N. et al. Microstrip antenna based biizotropnyh and bianisotropic chiral metamaterials in MIMO systems. Radiotehnika, 2019, no. 3, pp. 5–11. [In Russian].Biswas M., Guha D. Input impedance and resonance characteristic of superstrate loaded triangular microstrip patch. IET Microwaves, Antennas & Propagation, 2009, vol. 3, no. 1, pp. 92–98. DOI: https://doi.org/10.1049/iet-map:20080097.Attia H., Yousefi L., Ramahi O.M. Analytical model for calculating the radiation field of microstrip antennas with artificial magnetic superstrates: Theory and experiment. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 5, pp. 1438–1445. DOI: https://doi.org/10.1109/TAP.2011.2122295.Mirshekar-Syankal D., Hassani H.R. Characteristics of stacked rectangular and triangular patch antennas for dual band applications. 8th International Conference on Antennas and Propagation, 1993, pp. 728–731. Guha D., Siddiqui J.Y. Resonant frequency of circular microstrip antenna covered with dielectric superstrate. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 7, pp. 1649–1652. DOI: https://doi.org/10.1109/TAP.2003.813620.Shinde J. et al. Resonant frequencies of a circularly polarized nearly circular annular ring microstrip antenna with superstrate loading and airgaps. Kaleidoscope: Beyond the Internet? – Innovations for Future Networks and Services, 2010, pp. 1–7. Pozar D. Radiation and scattering from a microstrip patch on a uniaxial substrate. IEEE Transactions on Antennas and Propagation, 1987, vol. 35, no. 6, pp. 613–621. DOI: https://doi.org/10.1109/TAP.1987.1144161.Engheta N. The theory of chirostrip antennas. Proceedings of the 1988 URSI International Radio Science Symposium, 1988, pp. 213. Engheta N., Pelet P. Modes in chirowaveguides. Optics Letters, 1989, vol. 14, no. 11, pp. 593–595. DOI: https://doi.org/10.1364/OL.14.000593.Kolmakova N. et al. Simple example of polarization plane rotation by the fringing fields interaction. 2013 European Microwave Confe­rence, 2013, pp. 936–938. DOI: https://doi.org/10.23919/EuMC.2013.6686812.Comez I. et al. Systematic analysis on the optical properties of chiral metamaterial slab for microwave polarization control. Applied Computational Electromagnetics Society Journal, 2015, vol. 30, no. 5, pp. 478–487. Clack C.T., Ballai I. Nonlinear theory of resonant slow waves in anisotropic and dispersive plasmas. Physics of Plasmas, 2018, vol. 15, no. 8, pp. 082310. DOI: https://doi.org/10.1063/1.2970947.Engheta N., Pelet P. Reduction of surface waves in chirostrip antennas. Electronics Letters, 1991, vol. 27, no. 1, pp. 5–7. DOI: https://doi.org/10.1049/el:19910004.Lindell V. et al. Electromagnetic Waves in Chiral and Bi-isotropic Media. Norwood: Altech House, 1994, 352 p. Pozar D.M. Microstrip antennas and arrays on chiral substrates. IEEE Transactions on Antennas and Propagation, 1992, vol. 40, no. 10, pp. 1260–1263. DOI: https://doi.org/10.1109/8.182462.Zebiri C., Benabdelaziz F., Sayad D. Surface waves investigation of a bianisotropic chiral substrate resonator. Progress In Electromagne­tics Research B, 2012, vol. 40, pp. 399–414. DOI: https://doi.org/10.2528/PIERB12032205.Toscano A., Vegni L. A new efficient moment method formulation for the design of microstrip antennas over a chiral grounded slab. Journal of Electromagnetic Waves and Applications, 1997, vol. 11, no. 5, pp. 567–592. DOI: https://doi.org/10.1163/156939397X00846.Zebiri C., Lashab M., Benabdelaziz F. Effect of anisotropic magneto-chirality on the characteristics of a microstrip resonator. IET Microwaves, Antennas & Propagation, 2010, vol. 4, no. 4, pp. 446–452. DOI: https://doi.org/10.1049/iet-map.2008.0439.Zebiri C., Lashab M., Benabdelaziz F. Rectangular microstrip antenna with uniaxial bi-anisotropic chiral substratesuperstrate. IET Microwaves, Antennas & Propagation, 2011, vol. 5, no. 1, pp. 17–29. DOI: https://doi.org/10.1049/iet-map.2009.0446.Zebiri C., Benabdelaziz F., Lashab M. Complex media parameter effect: On the input impedance of rectangular microstrip antenna. 2012 IEEE International Conference on Complex Systems (ICCS), 2012, pp. 1–3. DOI: https://doi.org/10.1109/ICoCS.2012.6458517.Toscano A., Vegni L. Evaluation of the resonant frequencies and bandwidth in microstrip antennas with a chiral grounded slab. International Journal of Electronics, 1996, vol. 81, no. 6, pp. 671–676. DOI: https://doi.org/10.1080/002072196136364.Zebiri C., Benabdelaziz F., Lashab M. Bianisotropic superstrate effect on rectangular microstrip patch antenna parameters. 3rd International Conference on Metamaterials, Photonic Crystals and Plasmonics, META’12, 2012, pp. 365–368. Zebiri C., Lashab M., Benabdelaziz F. Asymmetrical effects of bi-anisotropic substrate-superstrate sandwich structure on patch resonator. Progress In Electromagnetics Research B, 2013, vol. 49, pp. 319–337. DOI: https://doi.org/10.2528/PIERB13012115.Zebiri C. et al. Gyro-chirality effect of bianisotropic substrate on the operational of rectangular microstrip patch antenna. International Journal of Applied Electromagnetics and Mechanics, 2016, vol. 51, no. 3, pp. 249–260. DOI: https://doi.org/10.3233/JAE-150141.Capolino F. Theory and Phenomena of Metamaterials. Boca Raton: Taylor & Francis – CRC Press, 2009, 992 p. Neganov V.A., Osipov O.V. Reflective, Waveguide and Radiating Elements with Chiral Structure. Moscow: Radio i svjaz’, 2006, 280 p. [In Russian].Dement’ev A.N. et al. Singular and Hypersingular Integral Equations in the Theory of Mirror and Stripline Antennas. Moscow: Radiotehnika, 2015, 216 p. [In Russian].

Copyright (c) 2019 Buzov A., Klyuev D., Kurushkin M., Neshcheret A., Usatenko T., Kabanov V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies