Analysis of a system with exponential and hyper-Erlang distributions by the method of spectral decomposition of the solution the Lindley integral equation
- Authors: Tarasov V.1, Bahareva N.1, Kada O.1
-
Affiliations:
- Povolzhskiy State University of Telecommunications and Informatics
- Issue: Vol 22, No 3 (2019)
- Pages: 49-54
- Section: Articles
- URL: https://journals.ssau.ru/pwp/article/view/7496
- DOI: https://doi.org/10.18469/1810-3189.2019.22.3.49-54
- ID: 7496
Cite item
Full Text
Abstract
In this work, we obtain the spectral decomposition of the solution of the Lindley integral equation for a queuing system with a Poisson input flow of requirements and a hyper-Erlang distribution of the service time. Based on it, a calculation formula is derived for the average queue waiting time for this system in a closed form. As you know, all other characteristics of the queuing systems are derived from the average waiting time. The resulting calculation formula complements and extends the well-known Polyachek-Khinchin formula in queuing theory for M/G/1 systems. In the queueing theory, studies of private systems of the M/G/1 type are relevant due to the fact that they are still actively used in the modern theory of teletraffic.
About the authors
V.N. Tarasov
Povolzhskiy State University of Telecommunications and Informatics
Author for correspondence.
Email: tarasov-vn@psuti.ru
N.F. Bahareva
Povolzhskiy State University of Telecommunications and Informatics
Email: bakhracheva@yandex.ru
O. Kada
Povolzhskiy State University of Telecommunications and Informatics
Email: otman2333@gmail.com
References
- Klejnrok L. Teorija massovogo obsluzhivanija; per. s angl. pod red. V.I. Nejman [Queuing theory; trans. from English. ed. by V.I. Neumann]. M.: Mashinostroenie, 1979, 432 p. [in Russian].Brännström N. A Queueing Theory Analysis of Wireless Radio Systems: master’s thesis applied to HS-DSCH. Lulea University of Technology, 2004, 79 p. [in English].Tarasov V.N. Issledovanie sistem massovogo obsluzhivanija s gipereksponentsial’nymi vhodnymi raspredelenijami [A study of queuing systems with input distributions Hyperexponential]. Problemy peredachi informatsii [Information Transmission Problems], 2016, no. 1, pp. 16–26 [in Russian].Tarasov V.N., Bahapeva N.F., Lipilina L.V. Matematicheskaja model’ teletrafika na osnove sistemy G/M/1 i rezul’taty vychislitel’nyh eksperimentov [Teletraffic mathematical model based on the system G/M/1 and the results of computational experiments]. Informatsionnye tehnologii [Information Technology], 2016, vol. 22, no. 2, pp. 121–126 [in Russian].Tarasov V.N., Kartashevskij I.V. Sposoby approksimatsii vhodnyh raspredelenij dlja sistemy G/G/1 i analiz poluchennyh rezul’tatov [Methods approximation input distributions for the system G/G/1 and analysis of the results]. Sistemy upravlenija i informatsionnye tehnologii [Control Systems and Information Technology], 2015, no. 3, pp. 182–185 [in Russian].Tarasov V.N., Gorelov G.A., Ushakov Ju.A. Vosstanovlenie momentnyh harakteristik raspredelenija intervalov mezhdu paketami vhodjaschego trafika [Recovery characteristics of the torque distribution of intervals between the packets of incoming traffic]. Infokommunikatsionnye tehnologii [Information and Communication technologies], 2014, no. 2, pp. 40–44 [in Russian].Tarasov V.N. Verojatnostnoe komp’juternoe modelirovanie slozhnyh sistem [Probabilistic computer simulation of complex systems]. Samara: SNTs RAN, 2002, 194 p. [in Russian].Aliev T.I. Approksimatsija verojatnostnyh raspredelenij v modeljah massovogo obsluzhivanija [Approximation of probability distributions in queuing models]. Nauchno-tehnicheskij vestnik informatsionnyh tehnologij, mehaniki i optiki [Scientific and Technical Gazette Information Technologies, Mechanics and Optics], 2013, no. 2 (84), pp. 88–93 [in Russian].Myskja A. An improved heuristic approximation for the GI/GI/1 queue with bursty arrivals. Teletraffic and Datatraffic in a Period of Change, ITC-13: proc. of congress, Copenhagen, Denmark, 19–26 Jun 1991, pp. 683–688 [in English].Whitt W. Approximating a point process by a renewal process, I: Two basic methods. Operation Research, 1982, vol. 30, no. 1, pp. 125–147 [in English].Jennings O.B., Pender J. Comparisons of ticket and standard queues. Queueing Systems, 2016, vol. 84, no. 1–2, pp. 145–202 [in English].Gromoll H.C., Terwilliger B., Zwart B. Heavy traffic limit for a tandem queue with identical service times. Queueing Systems, 2018, vol. 89, no. 3–4, pp. 213–241 [in English].Legros B. M/G/1 queue with event-dependent arrival rates. Queueing Systems, 2018, vol. 89, no. 3–4, pp. 269–301 [in English].Demichelis C., Chimento P. IP Packet Delay Variation Metric for IP Performance Metrics. URL: https://tools.ietf.org/html/rfc3393 [in English].Tarasov V.N., Bahareva N.F. Obobschennaja dvumernaja diffuzionnaja model’ massovogo obsluzhivanija tipa GI/G/1 [Generalized two-dimensional diffusion queuing model type GI/G/1]. Telekommunikatsii [Telecommunications], 2009, no. 7, pp. 2–8 [in Russian].Tarasov V.N., Malahov S.V., Kartashevskij I.V. Teoreticheskoe i eksperimental’noe issledovanie zaderzhki v programmno-konfiguriruemyh setjah [Theoretical and experimental study of delays in software-configurable network]. Infokommunikatsionnye tehnologii [Information and Communication Technologies], 2015, vol. 13, no. 4, pp. 409–413 [in Russian].