Comparison of the main aspects of modern approaches to the development of surface acoustic wave filters: model of the coupling of mode and the finite element method


Cite item

Abstract

This article discusses the main issues of designing filters based on surface acoustic waves. A type of band-pass filter based on longitudinal resonant modes is presented. The features of the calculation based on two approaches are considered: the coupled mode model and the finite element method. Practical recommendations are proposed for reducing the time of filter calculation in numerical simulation. The results of calculating and measuring the transmission coefficient of a filter on a leaky surface acoustic waves on a 36° YX-cut lithium tantalate substrate are presented and compared. The main aspects and directions in which the considered modeling methods can be compared are highlighted and analyzed. It is shown that the use of different modeling approaches increases the development efficiency, and fast analytical models are required for the synthesis and optimization of filter parameters.

About the authors

Aleksey S. Koigerov

Saint Petersburg Electrotechnical University

Author for correspondence.
Email: a.koigerov@gmail.ru
5, Professora Popova Street, 197376, Saint Petersburg, Russia

References

  1. Фильтрация и спектральный анализ радиосигналов. Алгоритмы. Структуры. Устройства / Г.М. Аристархов [и др.]. М.: Радиотехника, 2020. 504 с.
  2. Фильтры на поверхностных акустических волнах (расчет, технология и применение); пер. с англ. / под ред. Г. Мэттьюза. М.: Радио и связь, 1981. 742 с.
  3. Yantchev V., Turner P., Plessky V. COMSOL modeling of SAW resonators // IEEE Ultrasonics Symposium Proceedings. 2016. P. 1–4. DOI: https://doi.org/10.1109/ULTSYM.2016.7728546
  4. Веремеев И.В. Доберштейн С.А., Разгоняев В.К. Моделирование ПАВ-резонаторов и лестничных ПАВ-фильтров методом P-матриц // Техника радиосвязи. 2018. № 3. С. 61–71.
  5. Plessky V., Koskela J. Coupling-of-modes analysis of SAW devices // International Journal of High Speed Electronics and Systems. 2000. Vol. 10, no. 4. P. 867–947. DOI: https://doi.org/10.1142/S0129156400000684
  6. Sveshnikov B. Discrete analysis of regular systems // IEEE International Ultrasonics Symposium. 2010. P. 1890–1893. DOI: https://doi.org/10.1109/ULTSYM.2010.5935881
  7. Григорьевский В.И. Расчет характеристик устройств на поверхностных акустических волнах при наличии отражений из-за механической нагрузки в области электродов // Радиотехника и электроника. 2009. Т. 54, № 3. С. 363–370.
  8. Дмитриев В.Ф. Вывод модифицированных уравнений связанных поверхностных акустических волн // Радиотехника и электроника. 2009. Т. 54, № 9. C. 1134–1143.
  9. Fast GPU-Assisted FEM Simulations of 3D Periodic TCSAW, IHP, and XBAR Devices / J. Koskela [et al.] // IEEE International Ultrasonics Symposium. 2019. P. 181–184. DOI: https://doi.org/10.1109/ULTSYM.2019.8926183
  10. Rapid 2D FEM simulation of advanced SAW device / J. Koskela [et al.] // IEEE MTT-S International Microwave Symposium (IMS). 2017. P. 1484–1486. DOI: https://doi.org/10.1109/MWSYM.2017.8058903
  11. Hong J., Lancaster M.J. Microstrip Filters for RF/Microwave Applications. Hoboken: John Wiley & Sons. Inc., 2001. 457 p.
  12. Automated COM parameter extraction for SiO2/LiNbO3 and SiO2/LiTaO3 substrates / S. Malocha [et al.] // IEEE International Ultrasonics Symposium. 2016. P. 1–4. DOI: https://doi.org/10.1109/ULTSYM.2016.7728387
  13. Pastureaud T. Evaluation of the P-matrix parameters frequency variation using periodic FEM/BEM analysis // IEEE Ultrasonics Symposium. 2004. P. 80–84. DOI: https://doi.org/10.1109/ULTSYM.2004.1417673
  14. Tikka A., Said A.-S., Abbott D. Acoustic wave parameter extraction with application to delay line modelling using finite element analysis // Sensors & Transducers Journal. 2008. Vol. 95, no. 8. P. 26–39. URL: https://www.sensorsportal.com/HTML/DIGEST/P_311.htm
  15. Koigerov A.S., Balysheva O.L. Numerical approach for extraction COM surface acoustic wave parameters from periodic structures analysis // Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). 2021. P. 1–6. DOI: https://doi.org/10.1109/WECONF51603.2021.9470638
  16. Койгеров А.С. Лестничные фильтры на вытекающих поверхностных акустических волнах на подложке ниобата лития // Нано и микросистемная техника. 2021. Т. 23, № 3. С. 139–147. DOI: https://doi.org/10.17587/nmst.23.139-147
  17. Auld B.A. Acoustic Fields and Waves in Solids. New York: Wiley, 1973. 414 p.
  18. Свешников Б.В., Багдасарян А.С. Основные принципы формирования поперечных мод в многослойных волноводах поверхностных акустических волн // Известия Высших учебных заведений. Радиофизика. 2016. Т. 59, № 2. С. 108–123.
  19. Morgan D. Surface Acoustic Wave Filters with Applications to Electronic Communications and Signal Processing. Cambridge: Academic Press, 2010. 448 p.
  20. Improved material constants for LiNbO3/ and LiTaO3 / G. Kovacs [et al.] // IEEE Symposium on Ultrasonics. 1990. Vol. 1. P. 435–438. DOI: https://doi.org/10.1109/ULTSYM.1990.171403

Copyright (c) 2022 Koigerov A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies