Система поддержки принятия решений при управлении техническим обслуживанием автономных транспортных средств
- Авторы: Орлов С.П.1, Сусарев С.В.1
-
Учреждения:
- Самарский государственный технический университет
- Выпуск: Том 13, № 3 (2023)
- Страницы: 424-436
- Раздел: МЕТОДЫ И ТЕХНОЛОГИИ ПРИНЯТИЯ РЕШЕНИЙ
- URL: https://journals.ssau.ru/ontology/article/view/26745
- DOI: https://doi.org/10.18287/2223-9537-2023-13-3-424-436
- ID: 26745
Цитировать
Полный текст
Аннотация
Автономные транспортные средства являются сложными объектами, оснащёнными средствами мониторинга технического состояния и передачи данных для диагностики и прогнозирования. Проектирование новых образцов автономных и роботизированных автомобилей неразрывно связано с разработкой системы технического обслуживания. Эффективное функционирование системы технического обслуживания обеспечивается использованием интеллектуальных технологий и цифровых двойников. В статье рассматривается подход к проектированию системы поддержки принятия решений при техническом обслуживании и ремонте парка автономных транспортных средств. Система поддержки принятия решений ориентирована на роботизированные автомобили сельскохозяйственного назначения. Предлагаемая структура системы носит общий характер и может использоваться в транспортно-логистических предприятиях различных отраслей экономики. Представлена общая архитектура системы технического обслуживания, включающая нейро-цифровой двойник транспортного средства, блок аналитики, имитационные модели процессов эксплуатации и сервисные центры. Компонентами нейро-цифрового двойника являются цифровые двойники агрегатов автомобиля, база знаний, онтология предметной области, искусственные нейронные сети и коллектив экспертов. Предлагаемый подход основам на сочетании интеллектуальных технологий и имитационного моделирования во взаимодействии с коллективом экспертов. Разработан комплекс имитационных моделей функционирования парка автономных транспортных средств. Для анализа процессов эксплуатации автономных автомобилей предложены модели, основанные на стохастических временных раскрашенных сетях Петри. Разработанная системы поддержки принятия решений может быть использована на этапе виртуального ввода в эксплуатацию и при реальной работе автономных транспортных средств.
Полный текст
Введение
Развитие многих отраслей экономики ставит задачу проектирования автономных (роботизированных) транспортных средств (ТС) промышленного назначения. Проектирование автономных транспортных средств (АТС) включает создание на ранних этапах развитой системы технического обслуживания (ТО) и ремонта (ТОиР) [1, 2]. Предпосылкой к этому является оснащение АТС системой мониторинга технического состояния в реальном времени.
В настоящее время при проектировании таких сложных объектов, как АТС, используется подход, называемый «виртуальный ввод в эксплуатацию» [3, 4]. Он основан на широком использовании цифровых двойников (ЦД) агрегатов ТС, что позволяет проводить виртуальные испытания [5] и корректировать проектные решения конструкции АТС. В связи с этим уделяется внимание разработке моделей для ЦД агрегатов и элементов, а вопросы эксплуатации и обслуживания АТС решаются после создания и промышленного выпуска изделий.
Концепция Индустрия 4.0 стимулирует автоматизацию выпуска и эксплуатации ТС с использованием, в т.ч., интеллектуальных технологий. Опыт показал, что организация ТО ТС встречается со значительными неопределённостями, которые трудно учесть на этапе проектирования: разнообразие условий при эксплуатации, вероятностный характер износа и деградации элементов и агрегатов ТС, влияние случайных событий на поставки запасных частей, человеческий фактор.
Переход к Индустрии 5.0 призван обеспечить эффективное взаимодействие персонала и средств автоматизации и обработки данных [6, 7]. Разработка систем поддержки принятия решений (СППР) первоначально была ориентирована на максимальную формализацию выработки решений, а человек участвовал на этапе работы экспертных систем. Такой подход может привести к принятию решений, не отвечающих изменившимся условиям эксплуатации объекта. В соответствии с принципами Индустрии 5.0 участие человека (операторов, аналитиков, экспертов) в управлении должно быть активным и при эксплуатации объектов, чтобы минимизировать негативное влияние неопределённостей. Объединение технологий искусственного и человеческого интеллекта образует кибер-социальные системы [7]. В работе [8] введено понятие сложных трудно формализуемых систем, которые работают в условиях неопределённости и являются одним из классов цифровой экономики. Принятие решений в них проводится коллективным интеллектом, включающим искусственные интеллектуальные системы и нейро-цифровые двойники (НЦД) высококвалифицированных специалистов. Объединение НЦД в когнитивные системы позволит реализовать принципиально новые подходы в рамках концепции Индустрия 5.0 [9].
Разработка системы ТОиР для парка АТС направлена на создание средств оценки технического состояния с помощью моделирования производственных операций и процессов деградации и износа элементов АТС в течение всего периода эксплуатации. При этом должны осуществляться анализ адекватности моделей и корректировка баз знаний (БЗ) с помощью персонала, обслуживающего парк АТС.
В статье рассматривается подход к построению системы ТОиР, функционирующей в едином информационном пространстве с цифровыми сервисами, парком АТС, комплексом технологического оборудования основного производства и производителем АТС. Новизна подхода заключается в использовании в СППР имитационных моделей (ИМ) дискретно-событийного типа на сетях Петри [10, 11].
1. Система ТО АТС сельскохозяйственного назначения
Современные агротехнические комплексы имеют большую площадь обрабатываемых полей и различные производства по первичному приёму и обработке продукции. Они могут быть расположены на значительном расстоянии и связаны между собой дорогами, проходящими в малонаселённой местности. Создание роботизированных ТС в этом случае – актуальная задача, дающая экономический эффект и повышение производительности сельскохозяйственных работ1. На рисунке 1 приведена обобщённая структура системы диагностики и прогнозирования технического состояния автономных грузовых автомобилей КАМАЗ сельскохозяйственного назначения [13].
Рисунок 1 – Обобщённая структура системы диагностики автономных автомобилей КАМАЗ
Мониторинг состояния АТС выполняется в процессе его эксплуатации. Анализ технического состояния и прогноз осуществляется на базе ЦД АТС. Системой диагностики АТС решаются следующие задачи:
- обработка данных из бортовых систем АТС и запись информации в облачном хранилище;
- анализ и статистическая обработка измеряемых параметров для определения их достоверности;
- идентификация показателей функционирования узлов, агрегатов и систем АТС;
- сопоставление полученных данных с параметрами динамических моделей систем, адаптивных моделей износа и деградации систем АТС;
- анализ расхождения параметров бортовой системы АТС с модельными параметрами и выявление аварийных и предотказных состояний систем, агрегатов и узлов;
- статистический анализ отказов узлов, агрегатов, прогнозирование остаточного ресурса узлов, агрегатов и систем автомобиля;
- формирование рекомендаций по проведению прогнозного ТО АТС [13].
2. Организация системы ТО АТС
Проектирование системы ТОиР начинается на этапе виртуального ввода в эксплуатацию автономного автомобиля КАМАЗ. На этом этапе создаются ЦД и ИМ процессов выполнения производственных операций. Доработка моделей, уточнение условий и правил функционирования АТС выполняется в процессе эксплуатации.
Основу системы ТОиР составляет СППР, базирующаяся на интеллектуальных технологиях (рисунок 2). Своевременное снабжение запасными частями службы управления сервисом (СС) – ключевой фактор в обеспечении высокой экономической эффективности за счёт снижения времени простоя автомобилей в сервисном центре (СЦ). С этой целью также используется выездной мобильный сервис (МС).
Рисунок 2 – Архитектура системы технического обслуживания и ремонта парка автономных транспортных средств
Парк АТС включает три группы автомобилей:
- активные АТС, полностью готовые к эксплуатации;
- резервные АТС, которые находятся в работоспособном состоянии и могут при необходимости заменить активные АТС;
- каннибализируемые (разбираемые) АТС, укомплектованные работоспособными агрегатами и элементами, которые могут быть использованы для замены элементов, вышедших из строя на активном АТС [14].
Взаимодействие производителей автомобилей и запасных частей с эксплуатирующим транспортным предприятием обеспечивает решение двух задач:
- своевременную поставку запчастей в СЦ,
- корректировку проектной, технологической и эксплуатационной документации АТС по результатам мониторинга и анализа эксплуатации.
В соответствии с принципами Индустрии 5.0 основные технологии принятия решений сосредоточены в НЦД. Эта подсистема включает ЦД агрегатов, интеллектуальный анализ данных с помощью искусственных нейронных сетей (ИНС), онтологию предметной области (ПрО) ТО и онтологические шаблоны, продукционную БЗ и коллектив экспертов.
2.1 ЦД агрегатов АТС
Существующие методики и технологии моделирования позволяют создавать модели элементов, агрегатов и систем автомобилей на основе их феноменологии, протекающих процессов, инженерных и эксплуатационных параметров с использованием эмпирических и технических данных. Это даёт возможность создавать цифровые модели для прогнозирования и отработки процессов функционирования АТС.
ЦД автономного автомобиля – это модель, описывающая все характеристики объекта и процессов, связанных с его производством и эксплуатацией. ЦД позволяет создать копию физического мира, в которой фиксируются все данные о материалах, узлах, свойствах конструкции, выполняемых операциях и особенностях эксплуатации АТС.
При проектировании роботизированной транспортной системы автомобилей КАМАЗ реализован модельно-ориентированный подход [15]. Параметры, характеризующие действительное состояние систем и агрегатов АТС, получаемые с его борта, периодически сопоставляются с параметрами моделей ЦД, учитывающих износ компонентов, влияние окружающей среды, взаимовлияние систем автомобиля. По величине отклонений этих параметров от модельных значений осуществляется оценка состояния АТС, определение предотказных состояний систем и агрегатов, делается прогноз остаточного ресурса оборудования и систем.
2.2 Искусственные нейронные сети
ИНС рекуррентного типа обрабатывают временные ряды значений контролируемых параметров автономных автомобилей. После первичной обработки (см. рисунок 1) эта информация передаётся на входы ИНС. В результате выявляются тенденции к переходу в предотказные состояния агрегатов и элементов АТС и связанные с этим параметры. Другие классы ИНС (многослойные перцептроны и свёрточные нейронные сети) используются для классификации дефектов и предотказных состояний [16].
2.3 Онтология процесса ТОиР АТС
Процедура построения онтологии технического сервиса, ориентированного на агропромышленное производство, описана в работе [17]. В работах [18, 19] представлена методика построения БЗ на основе шаблонов онтологического проектирования и таблиц решений для ТО авиационной техники. Трансформация моделей при создании продукционной БЗ и таблицы решений описывается формальным выражением:
T: OntOWL →CodeKB,
где OntOWL – код на языке OWL 2 DL, описывающий онтологию ПрО на основе онтологического шаблона, CodeKB – программный код БЗ.
Основные этапы методики:
- построение онтологии на основе онтологического шаблона, созданного для ПрО «ТО»;
- формирование модели продукционной БЗ;
- уточнение и наполнение продукционной БЗ, формирование таблиц решений;
- интерпретация, генерация и отладка таблиц решений.
Данная методика послужила базой для построения онтологии ТОиР АТС в соответствии со стандартом [20]. Основой служит онтологический шаблон содержания описания процессов ТОиР технических объектов, предложенный в [19] (см. рисунок 3).
Рисунок 3 – Фрагмент онтологического шаблона содержания для процессов технического обслуживания и ремонта [19]
Для построения таблиц решений используются матрицы предотказных состояний элементов и систем АТС, которые получены при исследованиях фактических характеристик двигателя2, устанавливаемого на автомобили КАМАЗ различных модификаций.
Фрагмент матрицы предотказных состояний для системы масляного охлаждения коробки передач приведён в таблице 1. Рассмотрены три основные характеристики: ошибка δTN достижения номинального значения температуры; изменение длительности переходного процесса ∆t; изменение показателя колебательности переходного процесса δM. В таблице 1 обозначены: КЦ – количество циклов работы; ПР1 – процесс роста температуры масла в коробке передач при прогреве; ПР2 – процесс снижения температуры масла в коробке передач при охлаждении; РКПП – роботизированная коробка переключения передач.
Полные матрицы предотказных состояний содержат несколько сотен строк для всех основных элементов двигателя и других систем АТС. Эти матрицы используются для формирования продукционных правил вывода решений.
Таблица 1 – Фрагмент матрицы предотказных состояний системы масляного охлаждения коробки передач
Система/ Элемент/Ресурс
| Значения реального ресурса при предотказном состоянии | Процессы, на которые | Показатели переходного процесса при предотказном состоянии | ||||
КЦ, тыс. ед. | Пробег, тыс.км. | Наработка, час | δTN, % | ∆t, с | δM,% | ||
Муфта подкачивающего насоса | 210 | 188 | 47500 | ПР1 | 15 | 150 | - |
ПР2 | 7 | 9 | 10 | ||||
Радиатор | - | - | 84000 | ПР1 | 12 | 120 | - |
ПР2 | 8 | 10 | 13 | ||||
Масло РКПП | - | 76 | 6400 | ПР1 | 10 | 130 | - |
ПР2 | 6 | 10 | 13 |
2.4 Коллектив экспертов
Роль коллектива экспертов в разрабатываемой системе ТОиР заключается в постоянном контроле технического состояния АТС и коррекции таблицы решений по результатам эксплуатации и имитационных экспериментов.
Наличие ИМ и тренажёрных средств даёт возможность эффективно использовать опыт и интуицию водителей для оценки ситуаций и выработки решений. В разработанной системе роботизированных автомобилей КАМАЗ на первых этапах предусмотрено непосредственное участие водителя в управлении АТС. При этом многие функции берут на себя подсистемы интеллектуального управления. Водитель АТС может сконцентрировать внимание на особенности вождения в реальных условиях. Группа аналитиков изучает результаты моделирования на ЦД, в т.ч. на моделях ИМ1 – ИМ4, построенных на сетях Петри. В дальнейшем планируется эксплуатация полностью роботизированных грузовых автомобилей.
Тесное взаимодействие всех членов коллектива экспертов в сочетании с интеллектуальными технологиями нейронных сетей образует «суперинтеллект», который обеспечит новое качество при управлении системой ТОиР в условиях неопределённостей.
3. Имитационные модели в СППР ТОиР
Для СППР (см. рисунок 2) разработаны ИМ дискретно-событийного типа. Они используются для исследований при различных сценариях условий эксплуатации АТС. Проведение статистических экспериментов на моделях позволяет обнаружить конфликты, недостатки определённых ресурсов, получить значения многих параметров, которые трудно или невозможно вычислить аналитически. В СППР включены следующие ИМ:
- ИМ1 – моделирование формирования заявок на снабжение запчастями СЦ, процессов их транспортировки и запросов к их производителям;
- ИМ2 – модель распределения АТС по СЦ или МС при появлении запросов на ТОиР;
- ИМ3 – модель распределения АТС по производственным задачам, моделирование процессов эксплуатации АТС;
- ИМ4 – моделирование процессов износа и деградации элементов узлов и агрегатов АТС, приводящих к дефектам или предотказным состояниям.
Разработанные ИМ базируются на использовании аппарата временных раскрашенных сетей Петри [11, 21]. Формальное определение сети Петри имеет вид:
PN=(C, B, P, T, A, V, F, w),
где C – конечное множество цветов; B – набор маркеров цветов c ∈ C; P - конечное множество позиций {p1,…,pm} ∈ P, каждая позиция p имеет цвет c(p) ∈ C и набор маркеров b(p) ⊆ B данного цвета; T - конечное множество переходов; V- конечное множество переменных v(с) ∈ V , соответствующих цветам c ∈ C; F - конечное множество функций, которые используются как выражения для описания действий на дугах, соединяющих позиции и переходы; A – матрица инцидентности позиций и переходов, w – функция времени срабатывания, присваивающая положительное целое число каждому переходу в сети.
Описание объектов с помощью цветных маркеров даёт возможность оперировать в модели с множеством, элементами которого являются отдельные автономные автомобили. При этом формальное описание параметров АТС задаётся в виде вектора:
ATSj = (IDj, Modj, RTj, RLj, MTj, TIj, TAj), j=1, …, J, (1)
где IDj – номер j-го автомобиля, Modj – модель автомобиля, RTj – наработка после последнего ТОиР, RLj – остаточный ресурс, MTj – оставшееся время до следующего ТО, TIj – начало текущего периода эксплуатации, TAj – суммарная наработка, J – количество АТС в парке.
Структура ИМ3, имитирующей выполнение АТС производственных задач, представлена на рисунке 4.
Рисунок 4 – Структура имитационных моделей на сети Петри
Главный модуль – анализатор основных временных параметров ТС в соответствии с выражением (1). В его функции входит отсчёт модельного времени наработки АТС, определение периодов до ТО, обработка запросов на события, появление которых определяется вероятностными законами V1,…,VK.
Модуль производственных операций реализует расписание работ на основе диаграммы Ганта. Модули ТО АТС и Ремонт АТС имитируют процессы обслуживания в СЦ.
Сетевые модели Петри строятся по иерархическому принципу: каждый отдельный модуль является сложной сетью Петри. В качестве инструментального средства создания и работы с сетями Петри использована программная система CPN Tools [22]. На рисунке 5 в качестве примера показана схемы работы анализатора временных параметров единичного АТС в системе CPN Tools.
Представленная модель анализатора осуществляет следующие функции:
- отсчёт модельного времени с фиксацией периодов ТО (Таймер, переход Т1);
- контроль оставшегося времени до периодического ТО или до окончания остаточного ресурса (переходы Т3 и Т4);
- генерация случайных событий, распределённых по пуассоновскому закону: а) запросы на ТО и б) появление отказов (переходы Т5 и Т6 соответственно);
- вывод АТС на ремонт при отказе (переход Tout1) или на ТО (переход Tout2).
Начальная разметка в позиции UPZ парка АТС соответствует двум автономным автомобилям моделей М1 и М2 с временными параметрами начала данного периода эксплуатации.
Для моделирования случайных процессов в CPN Tools предусмотрено объявление выражений, приписанных к позициям, дугам или переходам сети. С помощью таких выражений задаются законы распределения вероятностей. На рисунке 5 на выходных дугах переходов Т5 и Т6 формируются последовательности маркеров в соответствии с пуассоновским законом (сети Петри позволяют имитировать события с различными законами распределения). В структуре СППР (рисунок 2) имеется блок анализа и формирования стохастических моделей для основных параметров АТС, а также для событий типа «отказ», «дефект», «запрос на обслуживание». Этот блок используется коллективом экспертов для коррекции НЦД и установки различных сценариев и режимов эксплуатации АТС.
Рисунок 5 – Схемы работы анализатора временных параметров автономных транспортных средств в системе CPN Tools
4. Результаты вычислительных экспериментов
Построенные модели использованы при проведении вычислительных экспериментов с целью оценки эффективности выполнения производственных операций с применением АТС. Результаты анализа приведены для парка, состоящего из 12 автомобилей.
В качестве примера рассмотрена оценка выполнения в срок производственных задач. Для этого вычисляется коэффициент задержки выполнения задания Y = (ta - tsh )/tsh×100%, где tsh – длительность выполнения задания по расписанию, ta – реальное время выполнения задания при отвлечении АТС на ТОиР.
На рисунке 6 показаны зависимости коэффициента Y от длительности выполнения ТО и времени tmt до планового ТО по расписанию при распределении событий отказов оборудования АТС по пуассоновскому закону с интенсивностью λ = 0.1×10-3. Допустимое значение коэффициента задержки устанавливалось равным 10%. Видно, что увеличение периода tmt между плановым обслуживанием приводит к увеличению срока выполнения заданий, так как повышается вероятность отказов оборудования АТС.
Рисунок 6 – Зависимости коэффициента Y задержки выполнения производственного задания при заданной интенсивности отказов агрегатов автономных транспортных средств
Был выполнен эксперимент для получения рекомендаций по использованию разбираемых (каннибализируемых) АТС в условиях нехватки запчастей: число разбираемых АТС - 3, время Tразб ТО одного АТС с использованием разбираемых АТС от 6 до 12 часов, время tmt между периодическим ТО - от 100 до 400 часов. Результаты моделирования на ИМ сети Петри работы парка АТС с резервными и разбираемыми автомобилями показаны на рисунке 7.
Рисунок 7 – Зависимость коэффициента использования автономных транспортных средств от времени до планового ремонта tmt и стратегии разборки Tразб
Рассчитывался коэффициент B использования автомобиля B=tr/tс, где tr – время эксплуатации автомобиля с грузом, tc - общее время эксплуатации, включающее ТОиР. Принимая допустимый уровень коэффициента использования, равный 85%, можно сформировать требования к режиму ТО автомобилей при различных стратегиях Tразб.
Заключение
Представлена архитектура системы ТО и структура СППР при организации эксплуатации, ремонта и ТО АТС. Оснащение средствами измерений и передачи данных современных автономных автомобилей, погрузчиков, комбайнов и других АТС позволяет обеспечить мониторинг их технического состояния. Разработан подход к построению СППР, опирающийся, в соответствии с концепцией Индустрия 5.0, на онтологии ПрО, интеллектуальные технологии, имитационное моделирование, ЦД и на взаимодействие коллектива экспертов.
Предложен ряд ИМ, базирующихся на стохастических временных раскрашенных сетях Петри и позволяющих исследовать процессы эксплуатации АТС с учётом вероятностных характеристик процессов деградации и износа элементов и узлов АТС.
Структура СППР и ИМ использованы при проектировании системы ТОиР роботизированных автомобилей сельскохозяйственного назначения.
1 Исследования, описанные в настоявшей статье, выполнялись в рамках НИР по проекту «Разработка роботизированной системы сельскохозяйственных автомобилей на базе семейства автомобилей КАМАЗ с автономным и дистанционным режимом управления» совместно с АО «КАМАЗ» [12].
2 Cummins ISBe6.7 E5 - дизельный двигатель объемом 6.7 литра и мощностью 242-292 л.с. с турбонаддувом.
Об авторах
Сергей Павлович Орлов
Самарский государственный технический университет
Автор, ответственный за переписку.
Email: orlovsp1946@gmail.com
ORCID iD: 0000-0002-0009-9456
Scopus Author ID: 57143799400
ResearcherId: D-5485-2014
д.т.н., профессор кафедры «Вычислительная техника», член Международной академии информатизации, член международного общества IEEE
Россия, СамараСергей Васильевич Сусарев
Самарский государственный технический университет
Email: susarev.sv@samgtu.ru
ORCID iD: 0000-0002-7738-1644
Scopus Author ID: 56708914300
к.т.н., доцент, заведующий кафедрой «Автоматизация и управление технологическими процессами»
Россия, СамараСписок литературы
- Щербаков М.В., Сай Ван К. Архитектура системы предсказательного технического обслуживания сложных многообъектных систем в концепции Индустрии 4.0. Программные продукты и системы. 2020. №2.
- С.186-194. doi: 10.15827/0236-235X.130.186-194.
- Sang G.M., Xu L., Vrieze P., Bai Y., Pan F. Predictive Maintenance in Industry 4.0. In: Proc. of the 10th International Conference on Information Systems and Technologies (ICIST' 2020) (Lecce, Italy). 2020. doi: 10.1145/1234567890.
- Süß S., Magnus S., Thron M., Zipper H., Odefey U., Fäßler V., Strahilov A., Kłodowski A., Bär T., Diedrich C. Test methodology for virtual commissioning based on behavior simulation of production systems. In: Proc. of 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA) (Berlin, Germany). 2016. P.1-9. doi: 10.1109/ETFA.2016.7733624.
- Novak P., Kadera P., Wimmer M. Model-based engineering and virtual commissioning of cyber-physical manufacturing systems — Transportation system case study. In: Proc. of the 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) (Limassol, Cyprus). 2017. P.1-4. doi: 10.1109/ETFA.2017.8247743.
- Орлов С.П., Бизюкова Е.Е., Яковлева А.Е. Виртуальные испытания агрегатов для виртуального ввода в производство роботизированного автомобиля // Вестник Самарского государственного технического университета. Серия «Технические науки». 2021. Т. 29(1). С.46-57. doi: 10.14498/tech.2021.1.4.
- Möller D.P.F., Vakilzadian H., Haas R.E. From Industry 4.0 towards Industry 5.0//In: Proc. 0f the 2022 IEEE In-ternational Conference on Electro Information Technology (eIT) (Mankato, MN, USA). IEEE Xplore, 2022.
- P.61-68. doi: 10.1109/eIT53891.2022.9813831.
- Бабкин А.В., Федоров А.А., Либерман И.В., Клачек П.М. Индустрия 5.0: понятие, формирование и развитие. Экономика промышленности. Russian Journal of Industrial Economics. 2021. Т.14(4). С.375-395. doi: 10.17073/2072-1633-2021-4-375-395.
- Клачек П.М., Бабкин А.В., Либерман И.В. Функциональная гибридная интеллектуальная система принятия решений для трудноформализуемых производственно-экономических задач в цифровой экономике // Научно-технические ведомости СПбГПУ. Экономические науки. 2019. №1. С.21-32. doi: 10.18721/JE.12102.
- Квинт В.Л. Концепция стратегирования. Т.2. СПб.: СЗИУ РАНХиГС, 2020. 164 с.
- Lu Z., Liu J., Dong L., Liang X. Maintenance Process Simulation Based Maintainability Evaluation by Using Stochastic Colored Petri Net. Appl. Sci. 2019. Vol.9, 3262. doi: 10.3390/app9163262.
- Orlov S.P., Susarev S.V., Uchaikin R.A. Application of Hierarchical Colored Petri Nets for Technological Facili-ties’ Maintenance Process Evaluation. Appl. Sci. 2021. Vol.11, 5100. doi: 10.3390/app11115100.
- Губанов Н.Г., Михеев Ю.В., Одинцов В.П., Ахтямов Р.Н., Морев А.С. Архитектура системы диагностики и прогнозирования технического состояния роботизированного транспортного средства // Проблемы управления и моделирования в сложных системах: Труды XXI международной конф. (3-6 сентября 2019 г., Самара, Россия). Самара: ООО "Офорт". 2019. С.171-174.
- Сусарев С.В., Орлов С.П., Бизюкова Е.Е., Учайкин Р.А. Моделирование процессов прогнозного технического обслуживания роботизированных агротехнических автомобилей // Математические методы в технологиях и технике. 2021. № 1. С. 148-153. doi: 10.52348/2712-8873_MMTT_2021_1_148.
- Sheng J., Prescott D. A hierarchical coloured Petri net model of fleet maintenance with cannibalization // Reliability Engineering & System Safety. 2017. Vol.168. P.290–305. doi: 10.1016/j.ress.2017.05.043.
- da Silva A.R. Model-driven engineering: A survey supported by the unified conceptual model //Computer Languages, Systems & Structures. 2015. Vol. 43. P.139-155. doi: 10.1016/j.cl.2015.06.001.
- Orlov S.P., Susarev S.V., Gubanov N.G., Sidorenko K.V., Morev A.S. Intelligent Model-Based Diagnostic System for an Agricultural Robotic Vehicle System. In: Proc. of the 14th International Forum on Strategic Technology (IFOST 2019) (Tomsk, Russia). Tomsk: TPU Publishing House, 2019. P.469–474. doi: 10.1007/978-3-030-95116-0_13.
- Димитров В.П., Борисова Л.В., Жмайлов Б.Б. Построение онтологии технического сервиса в агропромышленном комплексе // Вестник ДГТУ. 2011. Т.11. № 10(61). С.1771-1779.
- Грищенко М.А., Дородных Н.О., Коршунов С.А., Юрин А.Ю. Разработка диагностических интеллектуальных систем на основе онтологий // Онтология проектирования. 2018. Т.8, №.2(28). С.265-284. doi: 10.18287/2223-9537-2018-8-2-265-284.
- Дородных Н.О., Николайчук О.А., Юрин А.Ю. Использование онтологических шаблонов содержания при построении баз знаний для технического обслуживания и ремонта авиационной техники // Онтология проектирования. 2022. Т.12, № 2(44). С.158-171. doi: 10.18287/2223-9537-2022-12-2-158-171.
- ГОСТ 18322-2016. Система технического обслуживания и ремонта техники. Термины и определения. М.: Стандартинформ, 2017.
- Jensen K., Kristensen M. Coloured Petri Nets: Modelling and Validation of Concurrent Systems. Berlin/Heidelberg: Springer, 2009. 382 p.
- CPN Tools. Modeling with Coloured Petri Nets. http://cpntools.org/2018/01/16/getting-started.