Classes of task problems for determining the effectiveness of investment projects, taking into account the uncertainty of the external environment and multi-criteria


Cite item

Abstract

The article is devoted to the classification of decision-making tasks when choosing investment projects in conditions when uncontrollable factors act in these tasks that affect the efficiency of the compared projects, and the projects themselves must be evaluated by a set of criteria. In modern scientific literature, the issues of assessing the effectiveness of investments are often considered in isolation from issues related to the methodology for making optimal decisions in the economy. This can lead to an incorrect choice of investment projects when they are selected for financing, especially when it comes to innovative or socially significant projects. The article attempts to analyze the problems of multi-criteria and uncertainty of decisions in relation to the evaluation of investment projects. In particular, the question of classification is raised. All tasks for assessing the comparative effectiveness of projects are divided into five classes. The classification is based on three features: the number of project efficiency criteria taken into account, the number of optimality principles used under uncertainty, and the number of multi-criteria optimization principles used. As criteria for the effectiveness of investment projects are considered: net present value, yield index, payback period, internal rate of return. As the principles of optimality under uncertainty, the following principles are considered: optimism, pessimism, guaranteed result, Savage and guaranteed losses. The principles of taking into account the problem of multi-criteria are: the principle of dominance, the Pareto principle, the principle of the formation of complex indicators, the principle of highlighting the main indicator with the transfer of the rest to the category of restrictions. The tasks of each class are illustrated with examples, quantitative calculations for these examples are carried out.

Full Text

Введение

В настоящей работе исследуется вопрос классификации задач оценки эффективности инвестиционных проектов в условиях неопределенности внешней среды. В основу предлагаемой классификации положены следующие признаки: количество критериев эффективности проектов К, принципы оптимальности выбора в условиях неопределенности Gn; подходы к многокритериальному сопоставлению вариантов Gm. В качестве критериев эффективности инвестиционных проектов используются: чистая текущая стоимость ЧТС, индекс доходности ИД, внутренняя норма доходности ВНД, срок окупаемости инвестиций Ток. Принципы оптимальности Gn – это принципы оптимизма Gопт, пессимизма Gпес, гарантированного результата Gг, Сэвиджа Gc, гарантированных потерь GГП [1, 2]. В качестве подходов к многокритериальному выбору вариантов выступают принципы [2]: доминирования Gd, Парето Gp, использования комплексных показателей Gk, выделения главного критерия с переводом остальных в разряд ограничений Gu.

Необходимость формирования предлагаемой классификации обусловлена особенностями задач сравнительной оценки эффективности инвестиционных проектов [3], необходимостью учета при этой оценке неопределенности внешней среды и сравнения вариантов по совокупности несводимых друг к другу критериев [4]. В имеющейся научной литературе [4–11] задачи оценки эффективности инвестиционных проектов, как правило, рассматриваются в отрыве от задач многокритериального выбора и выбора в условиях неопределенности. При таком подходе объективность принимаемых решений может быть невысокой и приводить к тому или иному ущербу, который в ряде случаев может быть значительным. В настоящей работе реализуется комплексный подход к определению эффективности анализируемых проектов с учетом многокритериальности и с поправкой на действие неуправляемых факторов во внешней среде проектов.

 

Классы задач оценки сравнительной эффективности инвестиционных проектов при наличии неопределенности внешней среды и многокритериальности

 

Первый класс задач

К данному классу относятся задачи сравнительной оценки проектов с использованием единственного критерия эффективности КI на основе одного принципа оптимальности Gn, при наличии неопределенности внешней среды и единственного принципа многокритериального выбора Gм. В качестве набора управляемых факторов Х рассматриваются сами сравниваемые проекты. С учетом неуправляемых факторов У можно составить матрицу эффективности инвестиционных проектов  на основе критерия К1.

С помощью данной матрицы и определяется наилучшее решение в соответствии с принципом оптимальности Gn.

Пример 1. Производится сравнительная оценка эффективности набора проектов Пр. В качестве фактора неопределенности выступает ставка дисконтирования инвестора Еи, набор возможных значений которой известен. Предполагается, что на начальных этапах проектирования выбор ставки дисконтирования, который устроит инвестора, неизвестен. Путем анализа внешней среды удается определить только возможный набор ставок дисконтирования инвестора. В качестве критерия эффективности К1 инвестиционного проекта выбирается один из основных критериев – ЧТС. Для получения гарантированных результатов определения эффективности проекта при наличии неопределенности ставки дисконтирования Еи в качестве принципа выбора эффективных решений в условиях неопределенности Gn принимается принцип гарантированного результата. Принцип многокритериального выбора Gm представляет принцип удовлетворения потребностей потребителя.

Матрица эффективности представлена в виде таблицы 1.

 

Таблица 1 – Матрица эффективности

Table 1 – Efficiency matrix

Наименование

Еи1

Еи2

Еиn

Пр1

ЧТС1,1

ЧТС1,2

ЧТС1,n

Пр2

ЧТС2,1

ЧТС2,2

ЧТС2,n

Прm

ЧТСm,1

ЧТСm,2

ЧТСm,n

 

В соответствии с принципом гарантированного результата будем иметь

 

 

Полученное значение ЧТСг сравнивается с запланированным значением показателя чистой текущей стоимости, на основе чего принимается решение об эффективности проекта.

Рассмотрим пример решения задачи с количественными данными (табл. 2).

 

Таблица 2 – Пример решения задачи с количественными данными

Table 2 – Example of solving a problem with quantitative data

Наименование

Еи1

Еи2

Еи3

ЧТС min

Пр1

10

5

8

5

Пр2

7

9

4

4

Пр3

6

4

3

3

 

В данном примере ЧТСг = 5 ед. Наиболее эффективный проект Прэ.= Пр1.

 

Второй класс задач

Данный класс образуют задачи сравнительной оценки эффективности проектов, в которых эти проекты сравниваются с помощью одного показателя  эффективности проектов КI, но при использовании нескольких принципов оптимальности в условиях  неопределенности внешней среды. В качестве принципов Gn используются принципы: оптимизма, пессимизма, гарантированного результата и др. Поскольку критерий эффективности один, то, несмотря на применение нескольких принципов, возможно использование единственной матрицы эффективности проектов для анализируемого показателя К1.

К этой матрице эффективности по очереди применяются все необходимые принципы оптимальности: пессимизма, оптимизма, гарантированного результата и др. Оптимальные решения, принима-
емые по каждому из принципов, в общем случае не совпадают, т. е. Хопт (C1)  Хопт (G2)  Хопт (Gn).  Поскольку оптимальные решения по разным принципам не совпадают, приходится производить согласование указанных решений.  

В  качестве критерия эффективности проектов может выступать, например, критерий индекса доходности ИД. Матрица эффективности в этом случае имеет вид табл. 3. Неопределенность внешней среды характеризуется показателем величины инвестиций по проектам И.

 

Таблица 3 – Матрица эффективности нового вида

Table 3 – A new kind of efficiency matrix

Наименование

И1

И2

 

Иn

Пр1

ИД1,1

ИД1,2

 

ИД1,n

Пр2

ИД2,1

ИД2,2

 

ИД2,n

Прm

ИДm,1

ИДm,2

 

ИДm,n

 

В качестве принципов оптимальности принимаемых решений с учетом фактора неопределенности принимаются принципы: оптимизма и гарантированного результата. Применение принципа оптимизма позволяет определить верхнюю границу эффективности проекта. Эта оценка не должна быть ниже требуемого значения. Как уже отмечалось, с помощью принципа гарантированного результата, определяется гарантированное значение показателя ЧТС независимо от действий инвестора.

Принцип оптимизма записывается в виде

 

Принцип гарантированного результата формулируется следующим образом:

 

 

Пример 2. При использовании принципов оптимизма и гарантированного результата составляется матрица эффективности с условными данными ИД (табл. 4).

 

Таблица 4 – Матрица эффективности с условными данными ИД

Table 4 – Efficiency matrix with conditional ID data

Наименование

И1

И2

И3

Max ИД

Min ИД

Пр1

1

1,5

1,2

1,5

1

Пр2

1,3

1,4

1,3

1,4

1,3

Пр3

1,4

1.3

1

1,4

1

 

Анализ табл. 4 позволил сделать следующие выводы: ИДопт = 1,5. Наиболее эффективный проект Прэ= Пр1.  ИДг =  1,3.  Наиболее эффективный проект Пр2.

 

Третий класс задач

В задачах данного класса для выбора оптимального варианта инвестиций используется  несколько критериев эффективности проектов [6; 11; 12–14], один принцип оптимальности Gnодин  принцип  многокритериального выбора Gm.

Разные критерии оптимальности могут вступать между собой в противоречие, когда оптимальные решения по ним не совпадают. Это порождает необходимость в согласовании принимаемых решений.

Допустим, что в качестве критериев эффективности проектов выступают ЧТС и срок окупаемости инвестиций Ток. Принцип  принятия решений в условиях неопределенности представляет принцип гарантированного результата. В качестве принципа многокритериального выбора выступает принцип Парето. Матрицы эффективности имеют вид, представленный в табл. 5 и табл. 6.

 

Таблица 5 – Матрица значений срока окупаемости

Table 5 – Matrix of payback period values

Наименование

Еи1

Еи2

Еиn

Пр1

Ток.1,1

Ток.1,2

Ток.1,n

Пр2

Ток.2,1

Ток.2,2

Ток2,n

Прm

Ток.m,1

Ток.m,2

Ток.m,n

 

Таблица 6 – Матрица значений ЧТС

Table 6 – Matrix of values of CHTs

Наименование

Еи1

Еи2

Еиn

Пр1

ЧТС1,1

ЧТС1,2

ЧТС1,n

Пр2

ЧТС2,1

ЧТС2,2

ЧТС2,n

Прm

ЧТСm,1

ЧТСm,2

ЧТСm,n

 

Пример 3. Рассмотрим приведенную выше задачу с условными количественными данными (табл. 7 – матрица эффективности для срока окупаемости, табл. 8 – матрица эффективности для ЧТС).

Таблица 7 – Матрица эффективности для срока окупаемости

Table 7 – Efficiency matrix for payback period

Наименование

Еи1

Еи2

Еи3

Max Ток

Пр1

5

3

2

5

Пр2

2

4

5

5

Пр3

3

4

3

4

 

Таблица 8 – Матрица эффективности для ЧТС

Table 8 – Efficiency matrix for CHTS

Наименование

Еи1

Еи2

Еи3

ЧТС min

Пр1

20

13

8

8

Пр2

7

9

5

5

Пр3

12

15

3

3

 

Гарантированное значение срока окупаемости находится из выражения

 

 

Из табл. 7 следует: Ток.г =4 ед. Наиболее эффективный проект  Пр. э= Пр. 3.

Гарантированное значение ЧТС определяется из условия:

 

 

Из табл. 8 следует, что ЧТС г = 8 ед.  Наиболее эффективный проект Пр. э = Пр. 1.

Так как эффективные решения при использовании критериев Ток и ЧТС не совпадают, для выбора предпочтительного решения применяется принцип многокритериального выбора Парето. В данном случае в множество Парето (множество несравнимых проектов, которые доминируют над остальными проектами) попадают проекты Пр1 и Пр3. Для выбора единственного эффективного проекта потребуется применение  других принципов многокритериального выбора.

 

Четвертый класс задач

Четвертый класс задач включает в себя задачи сравнения инвестиционных проектов, характеризующиеся следующими параметрами: проекты сравниваются по совокупности из нескольких критериев эффективности проектов, выбор осуществляется на основе нескольких принципов оптимальности в условиях неопределенности Gn и одного принципа многокритериального выбора Gm.

В данном случае для оценки эффективности проектов составляется столько же  матриц эффективности, сколько критериев задействовано. Для каждой матрицы применяется весь набор принципов оптимальности Gn с учетом неопределенности внешней среды. Определяются оптимальные решения для каждого принципа оптимальности Gn по каждому критерию. Производится сравнение  полученных оптимальных решений и при необходимости их согласование на основе принципа Gm.

Допустим, что в качестве критериев эффективности выступают критерии удельных капитальных вложений Куд и себестоимости продукции С [6; 12; 14; 15]. Принципы выбора эффективных проектов представляют принцип гарантированного результата  и принцип  Сэвиджа. Матрица эффективности  при использовании критерия Куд показана в виде табл. 9.

Табл. 10 представляет матрицу эффективности проектов при использовании критерия себестоимости продукции (в частности производства электроэнергии).

Пример 4. Рассмотрим решение поставленной выше задачи с условными количественными данными. В таблице 11 представлены данные для критерия удельных капиталовложений.

 

Таблица 9 – Матрица эффективности при использовании критерия Куд

Table 9 – Efficiency matrix when using the criterion

Наименование

Еи1

Еи2

Еиn

Пр1

Куд1,1

Куд1,2

Куд1,n

Пр2

Куд2,1

Куд2,2

Куд2,n

 

Прm

Кудm,1

Кудm,2

Кудm,n

 

Таблица 10 – Матрица эффективности проектов при использовании критерия себестоимости продукции

Table 10 – Matrix of project effectiveness when using the cost of production criterion

Наименование

Еи1

Еи2

Еиn

Пр1

С1,1

С1,2

С1,n

Пр2

С2,1

С2,2

С2,n

Прm

Сm,1

Сm,2

Сm,n

 

Таблица 11 – Данные для критерия удельных капиталовложений

Table 11 – Data for the criterion of specific investments

Наименование

Еи1

Еи2

Еи3

Мах Куд.

Пр1

4

8

5

8

Пр2

2

4

7

7

Пр3

10

4

6

10

 

Из табл. 11 следует, что при использовании принципа гарантированного результата наиболее эффективным является проект Пр2, обеспечивающий гарантированные удельные капитальные вложения  равные  7 ед.

В табл. 12 представлены условные данные для критерия себестоимости продукции С.

 

Таблица 12 – Условные данные для критерия себестоимости продукции С

Table 12 – Conditional data for the criterion of the cost of production С

Наименование

Еи1

Еи2

Еи3

Мах С

Пр1

8

6

7

8

Пр2

5

7

9

9

Пр3

4

9

6

9

 

Анализ табл. 12 показывает, что наиболее эффективным при использовании критерия гарантированной себестоимости  является проект Пр1, себестоимость которого равняется  8 ед.

Применим принцип Сэвиджа при использовании  табл. 11 и  12, который записывается в виде

где Уг – гарантированная величина ущерба.

Для определения гарантированного ущерба при применении принципа Сэвиджа  при использовании критерия удельных капитальных вложений составляется матрица ущербов 1 (табл. 13) на основе табл. 11.

 

Таблица 13 – Матрица ущербов 1

Table 13 – Damage matrix 1

Наименование

Еи1

Еи2

Еи3

Мах У(Куд)

Пр1

2

4

0

4

Пр2

0

0

2

2

Пр3

8

0

1

8

 

Из табл. 13 следует: Уг = 2 ед. Наиболее эффективный проект Пр2.

Для определения гарантированного ущерба при использовании критерия себестоимости  составляется матрица ущербов 2 (табл.14) с использованием таблицы 12.

 

Таблица 14 – Матрица ущербов 2

Table 14 – Damage matrix 2

Наименование

Еи1

Еи2

Еи3

Мах У(С)

Пр1

4

0

1

4

Пр2

1

1

3

3

Пр3

0

3

0

3

 

В соответствии с данными табл. 14 определяются наиболее эффективные проекты Пр2 и Пр3, имеющие гарантированный ущерб, равный 3ед. Проект Пр2 характеризуется оптимальными значениями по обоим критериям, поэтому он доминирует над всеми остальными. Применение же принципа гарантированного результата не позволяет выявить единственный доминирующий вариант, в силу чего необходимо согласование вариантов.

 

Пятый класс задач

К данному классу относятся задачи, характеризующиеся следующими параметрами: решение принимается по нескольким критериям эффективности проектов К на основе нескольких принципов оптимальности принятия решений в условиях неопределенности Gn и нескольких принципов многокритериального выбора Gm.

Для  определения эффективности проектов составляется несколько матриц эффективности (по количеству применяемых критериев К). Для каждой матрицы применяется набор принципов оптимальности Gn с учетом неопределенности внешней среды. Определяются оптимальные решения для каждого принципа оптимальности Gn. Осуществляется выбор эффективных решений с использованием принципов многокритериального выбора Gm. Производится сравнение  полученных оптимальных решений и при необходимости их согласование.

Пример 5. При определении эффективности инвестиционных проектов применяются принципы Gn   с учетом фактора неопределенности: принцип гарантированного результата Gг , принцип Сэвиджа Gс (принцип гарантированного ущерба). В качестве принципов многокритериального выбора принимаются принципы: Парето, принцип выделения главного показателя и перевод остальных в разряд ограничений. Показатели эффективности проектов – чистая текущая стоимость ЧТС, индекс доходности ИД, срок окупаемости инвестиций Ток.

В данном случае вопросы согласования принимаемых решений становятся особенно острыми, так как возникают противоречия между показателями эффективности К, принципами оптимальности Gn, принципами многокритериального выбора Gm.

При рассмотрении данного примера используются данные примера четвертого класса задач при условии, что для определения эффективного решения используется не один  принцип многокритериального выбора, а несколько.

В данном случае реализуется следующий порядок выбора эффективного решения.

  1. Определяются эффективные решения при использовании принципа гарантированного результата. Были получены следующие результаты. При применении показателя эффективности проектов Куд эффективным является Пр2. При использовании показателя себестоимости эффективным является Пр1. Для окончательного принятия решения потребуется применение принципа выделения главного показателя и перевод остальных в разряд ограничений. Предлагается принять в качестве главного показателя показатель удельных капитальных вложений при условии, что себестоимость будет удовлетворять предъявляемым требованиям.
  2. Определяются эффективные решения при использовании принципа Сэвиджа. В данном случае при использовании показателя удельных капитальных вложений Куд наиболее эффективным является Пр2. В случае применения показателя себестоимости предпочтение следует отдать проекту Пр1.
  3. Для окончательного решения потребуется выбрать наиболее важный показатель с переводом остальных в разряд ограничений. Это будет определяться спецификой решаемых задач.

 

Выводы

  1. При определении эффективности инвестиционных проектов возникают следующие проблемы:

– проблема неопределенности внешней среды;

– проблема многокритериального выбора проектов;

– комплексный анализ проблем неопределенности и многокритериальности.

  1. В существующей научной литературе комплексному анализу указанных проблем уделяется явно недостаточное внимание.
  2. Предлагаемая в настоящей работе классификация задач оценки эффективности инвестиционных проектов может найти применение при анализе проектов различного содержания и выборе оптимальных решений.
×

About the authors

Felix F. Yurlov

Nizhny Novgorod State Technical University named after R.E. Alekseev

Author for correspondence.
Email: ffyurlov@gmail.com
ORCID iD: 0000-0002-6026-0408

honored scientist of the Russian Federation, Doctor of Technical Sciences, professor of the Department of Digital Economy

Russian Federation, 24, Minin Street, Nizhny Novgorod, 603950, Russian Federation

Sergey N. Yashin

Lobachevsky State University of Nizhny Novgorod

Email: jashinsn@yandex.ru
ORCID iD: 0000-0003-3039-4146

Doctor of Economics, professor, head of the Department of Management and Public Administration

Russian Federation, 23, Gagarin Avenue, Nizhny Novgorod, 603000, Russian Federation

Anna F. Plekhanova

Lobachevsky State University of Nizhny Novgorod

Email: docplekhanova@gmail.com
ORCID iD: 0000-0002-7820-5634

Doctor of Economics, professor of the Department of Finance and Credit

Russian Federation, 23, Gagarin Avenue, Nizhny Novgorod, 603000, Russian Federation

References

  1. Neumann J. von, Morgenstern O. Theory of Games and Economic Behavior. Moscow: Nauka, 1970, 983 p. Available at: https://institutiones.com/download/books/806-teoriya-igr-economichescoe-povedenie.html. (In Russ.)
  2. Yurlov F.F. [et al.] Methods and models in economics and financial activity. Nizhny Novgorod: NGTU im. R.E. Alekseeva, 2021. Available at: https://www.elibrary.ru/item.asp?id=19951889. EDN: https://www.elibrary.ru/pcyprc. (In Russ.)
  3. Yurlov F.F. Methods of evaluating the effectiveness and selection of preferred investment projects. F.F. Yurlov, A.F. Plekhanova, S.N. Yashin. Nizhny Novgorod, 2021. (In Russ.)
  4. Methodological recommendations for evaluating the effectiveness of investment projects and their selection for financing (second edition). Moscow: Ofitsial'noe izdanie, 2000. Available at: https://normativ.kontur.ru/
  5. document?moduleId=1&documentId=8730. (In Russ.)
  6. Burman G., Schmidt S. Economic analysis of investment projects. Moscow: UNITY, 1997. 345 p. Available at: https://altairbook.com/books/1472503-kapitalovlojeniya-ekonomicheskiy-analiz-investicionnyh-proektov.html. (In Russ.)
  7. Brykalov S.M. Evaluation of the effectiveness of investment projects based on a multi-criteria approach: on the example of projects in the nuclear power industry: Candidate’s of Economic Sciences thesis. Available at: https://www.dissercat.com/content/otsenka-effektivnosti-investitsionnykh-proektov-na-osnove-mnogokriterialnogo-podkhoda. (In Russ.)
  8. Kolass B. Financial activity management. Moscow: Yuniti, 1997, 576 p. Available at: https://bookree.org/reader?file=321411. (In Russ.)
  9. Blank I.A. Investment management: training course. Kyiv: El'ga-N, Nika-Tsentr, 2002. Available at: https://bookree.org/reader?file=600809&pg=1. (In Russ.)
  10. Bogatkin Yu.V., Shvandar V.A. Investment analysis: textbook for universities. Moscow: YuNITI-DANA, 2000, 264 p. Available at: https://biblioteka.bafe.edu.kg/download/Mened/Богатин%20Ю.В.,%20Швандр%
  11. В.А.%20Экономическое%20управление%20бизнесом%20Учеб.%20Пособие%20для%20вузов.%20М.%20ЮНИТИДАНА.pdf. (In Russ.)
  12. Beketov N.V., Fedorov V.G. Traditional methods of evaluating the effectiveness of investment projects. Financial Analytics: Science and Experience, 2008, no. 3 (3), pp. 78–83. Available at: https://www.elibrary.ru/item.asp?id=9914622. EDN: https://www.elibrary.ru/iizaad. (In Russ.)
  13. Leontiev N.Ya. Evaluation of the project activity of the engineering company of the nuclear industry: monograph. Nizhny Novgorod, 2017. (In Russ.)
  14. Usov N.V. Evaluation of the effectiveness of innovation and investment projects taking into account the multi-criteria and interests of stakeholders: Candidate’s of Economic Sciences thesis. Available at: https://www.elibrary.ru/item.asp?id=22335686. EDN: https://www.elibrary.ru/suubol. (In Russ.)
  15. Yashin S.N., Tukkel I.L., Koshelev E.V., Ivanov A.A. Project and technology management. Saint Petersburg: BKhV Peterburg, 2020, 388 p. Available at: https://www.elibrary.ru/item.asp?id=44153753. EDN: https://www.elibrary.ru/famvxf. (In Russ.)
  16. Yashin S.N., Tukkel I.L., Koshelev E.V., Korobova Yu.S., Zakharova Yu.V. Development and decision–making in innovation management. Nizhny Novgorod: Izd-vo Nizhegorodskogo universiteta, 2016, 375 p. Available at: http://www.iee.unn.ru/wp-content/uploads/sites/9/2017/02/RUR_2016_350.pdf; https://www.elibrary.ru/item.asp?id=21553044. EDN: https://www.elibrary.ru/sdquah. (In Russ.)
  17. Petrov M.A. Theory of stakeholders: ways of practical application. Vestnik of Saint Petersburg University. Management, 2004, no. 2, pp. 51–67. Available at: https://www.elibrary.ru/item.asp?id=9166498. EDN: https://www.elibrary.ru/hspjcd. (In Russ.)

Copyright (c) 2023 Vestnik of Samara University. Economics and Management

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies