Design and development of combustion chambers for gas turbine engines based on calculations of various levels of complexity


Cite item

Full Text

Abstract

The article proposes a method for designing combustion chambers for gas turbine engines based on a combination of the use of calculations in a one-dimensional and three-dimensional formulation of the problem. This technique allows you to quickly design at the initial stage of creating and development of the existing combustion chambers using simplified calculation algorithms. At the final stage, detailed calculations are carried out using three-dimensional numerical calculations. The method includes hydraulic calculations, on the basis of which the distribution of the air flow passing through the main elements of the combustion chamber is determined. Then, the mixing of the gas flow downstream of the flame tube head and the air passing through the holes in the flame tube is determined. The mixing quality determines the distribution of local mixture compositions along the length of the flame tube. The calculation of the combustion process is carried out with the determination of the combustion efficiency, temperature, concentrations of harmful substances and other parameters. The proposed method is tested drawing on the example of a combustion chamber of the cannular type. The results of numerical calculations, experimental data and values obtained using the proposed method for various operating modes of the engine are compared.

About the authors

Y. B. Aleksandrov

Kazan National Research Technical University named after A.N. Tupolev

Author for correspondence.
Email: alexwischen@rambler.ru

Candidate of Science (Chemistry), Associate Professor of the Department of Jet Engines and Power Plants

Russian Federation

T. D. Nguyen

Kazan National Research Technical University named after A.N. Tupolev

Email: nguyenthedat1609@gmail.com

Postgraduate Student of the Department of Jet Engines and Power Plants

Russian Federation

B. G. Mingazov

Kazan National Research Technical University named after A.N. Tupolev

Email: bgmingazov@kai.ru

Doctor of Science (Engineering), Professor, Department of Jet Engines and Power Plants

Russian Federation

References

  1. Grigor'ev V.A., Kuznetsov S.P., Belousov A.N. Osnovy dovodki aviatsionnykh GTD: ucheb. posobie [The basics of development of aviation gas turbine engines: tutorial]. Moscow: Mashinostroenie Publ., 2012. 152 p.
  2. Mingazov B.G., Aleksandrov Yu.B., Kosterin A.V., Tokmovtsev Yu.V. Protsessy goreniya i avtomatizirovannoe proektirovanie kamer sgoraniya GTD i GTU: ucheb. posobie [Combustion processes and computer-aided design of combustion chambers for gas turbine engines and gas turbines: textbook]. Kazan: KNRTU-KAI Publ., 2015. 159 p.
  3. Leshchenko I.A., Vovk M.Yu. Novatorskie resheniya v podgotovke matematicheskikh modeley aviatsionnykh GTD na osnove programmnogo kompleksa UNI_MM. Trudy XXXV Akademicheskikh chteniy po kosmonavtike, posvyashchennykh pamyati akademika S.P. Koroleva i drugikh vydayushchikhsya otechestvennykh uchenykh-pionerov osvoeniya kosmicheskogo prostranstva (January, 25-28, 2011, Moscow). Moscow: Bauman University Publ., 2011. P. 463-465. (In Russ.)
  4. Titov A.V., Osipov B.M. Programmnyy kompleks gazodinamicheskie raschety aviatsionnykh dvigateley versiya 17.2011 [Software complex gas-dynamic calculations of aircraft engines version 17.2011]. Certificate of state registration of software program no. 2017615294, 2017. (Publ. 12.05.2017)
  5. Aleksandrov Y.B., Nguyen T.D., Mingazov B.G., Sulaiman A.I. Computational grid impact on numerical computing results of three-dimensional non-stationary swirl flow behind the vane swirler. Aerospace MAI Journal. 2020. V. 27, no. 1. P. 122-132. (In Russ.). doi: 10.34759/vst-2020-1-122-132
  6. Sulaiman A.I., Mingazov B.G., Aleksandrov Yu.B., Nguen T.D. Smeshenie poperechnykh struy s gazovym potokom. Sbornik tezisov Vserossiyskoy nauchno-tekhnicheskoy konferentsii molodykh uchenykh i spetsialistov «Aviatsionnye Dvigateli i Silovye Ustanovki» (May, 28-30, 2015, Moscow). Moscow: CIAM Publ., 2019. P. 127-128. (In Russ.)
  7. Kustarev Yu.S., Emmil' M.V. Kamery sgoraniya gazoturbinnykh dvigateley: ucheb. posobie [Combustion chambers of gas turbine engines: manual for university students]. Moscow: MGTU «MAMI» Publ., 2009. 158 p.
  8. Lansky A.M., Lukachev S.V., Matveev S.G. Form, flow regimes and small-size turbine engines combustion chambers diffusers efficiency criteria. Civil Aviation High Technologies. 2013. No. 197. P. 16-19. (In Russ.)
  9. Kharitonov V.F. Proektirovanie kamer sgoraniya: ucheb. posobie [Design of combustion chambers. tutorial]. Ufa: Ufa State Aviation Technical University Publ., 2008. 138 p.
  10. Lefebvre A.H., Ballal D.R. Gas turbine combustion-alternative fuels and emissions. Boca Raton: CRC Press, 2010. 538 р. doi: 10.1201/9781420086058
  11. Pchelkin Yu.M. Kamery sgoraniya gazoturbinnykh dvigateley [Combustion chambers of gas turbine engines]. Moscow: Mashinostroenie Publ., 1984. 280 p.
  12. Abramovich G.N. Turbulentnoe smeshenie gazovykh struy [Turbulent mixing of gas jets]. Moscow: Nauka Publ., 1974. 272 p.
  13. Haker D.S. A simplified mixing length model of flame stability in swirling combustion. AIAA Journal. 1974. V. 12, Iss. 1. P. 65-71. doi: 10.2514/3.49154
  14. Nguyen T.D., Aleksandrov Y.B., Mingazov B.G. Study of mixing in a swirling jet. AIP Conference Proceedings. 2020. V. 2211. doi: 10.1063/5.0003049
  15. Mingazov B.G. Kamery sgoraniya gazoturbinnykh dvigateley: konstruktsiya, modelirovanie protsessov i raschet: ucheb. posobie [Combustion chambers of gas turbine engines. Design, simulation and calculation: Tutorial]. Kazan: Kazan National Research Technical University Publ., 2006. 219 p.
  16. Abramovich G.N. Prikladnaya gazovaya dinamika [Applied gas dynamics]. Moscow: Nauka Publ., 1976. 888 p.
  17. Lefebvre A.H. Gas turbine combustion. Hemisphere Pub. Corp., 1983. 531 p.
  18. Zeldovich Ya.B. Theory of heat density of an isothermal reaction in a jet. Soviet Physics: Technical Physics. 1941. V. 11. P. 493-500. (In Russ.)
  19. Metghalchi M., Keck J.C. Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature. Combustion and Flame. 1982. V. 48. P. 191-210. doi: 10.1016/0010-2180(82)90127-4
  20. Konnov A.A. The temperature and pressure dependences of the laminar burning velocity: experiments and modelling. Proceedings of the European Combustion Meeting (March 30-April 2, 2015, Budapest, Hungary).
  21. Talantov A.V. Osnovy teorii goreniya: ucheb. posobie. Ch. 1 [Fundamentals of the theory of combustion: textbook]. Kazan: Kazan Aviation Institute Publ., 1975. 253 p.
  22. Shchelkin K.I., Troshin Ya.K. Gazodinamika goreniya [Combustion gas dynamics]. Moscow: AN SSSR Publ., 1963. 254 p.
  23. Il'yashenko S.M., Talantov A.V. Teoriya i raschet pryamotochnykh kamer sgoraniya: ucheb. posobie [Theory and calculation of direct-flow combustion chambers]. Moscow: Mashinostroenie Publ., 1964. 306 p.
  24. Zuev V.S., Skubachevskiy L.S. Kamery sgoraniya vozdushno-reaktivnykh dvigateley: ucheb. posobie [Combustion chambers of air-jet engines: textbook]. Moscow: Oborongiz Publ., 1958. 214 p.
  25. Inozemtsev A.A., Konyaev E.A., Medvedev V.V., Nerad'ko A.V., Ryassov A.E. Aviatsionnyy dvigatel' PS-90A [Aviation engine PS-90A]. Moscow: FIZMATLIT Publ., 2007. 320 p.
  26. Kutsenko Yu.G. Chislennye metody otsenki emissionnykh kharakteristik kamer sgoraniya gazoturbinnykh dvigateley [Numerical methods for evaluating the emission characteristics of combustion chambers of gas turbine engines]. Ekaterenburg – Perm: Ural Branch of the Russian Academy of Sciences Publ., 2006. 140 p.
  27. Cen Z.L., Zhao J.G., Shen B.X. A comparative study of omega RSM and RNG k–ε model for the numerical simulation of a hydrocyclone. Iranian Journal of Chemistry and Chemical Engineering. 2014. V. 33, Iss. 3. P. 53-61.
  28. Aleksandrov Y.B., Sabirzyanov A.N., Yavkin V.B. Influence of simplifying a geometrical model of the gas turbine engine combustion chamber on the results of numerical modeling. Russian Aeronautics. 2017. V 60, Iss. 4. P. 575-582. doi: 10.3103/S1068799817040146

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies