Алгоритм мониторинга экологического состояния прибрежных акваторий в районе их интенсивного хозяйственного использования


Цитировать

Полный текст

Аннотация

В статье рассмотрен алгоритм мониторинга экологического состояния прибрежных акваторий, предназначенный для выявления сильных нефтяных и крупнодисперсных загрязнений, определения наличия тонких нефтяных плёнок и оценки концентрации минеральных, органических загрязнений в приповерхностном водном слое. Представлен метод идентификации мелководья, включающий в себя выявление зон песчаного дна и зон зарастания береговой линии высшей водной растительностью (фитопланктон). Проведена оценка экологического состояния прибрежной зоны города Регенсия (Эспириту-Санту, Бразилия). Представленный алгоритм основан на анализе изменения вида спектрально-энергетических характеристик водной поверхности при её загрязнении компонентами различного типа и концентраций по отношению к спектрально-энергетическим характеристикам  условно чистой водной поверхности. На основе полученных оценок проводится кластеризация исходных данных, по результатам которой формируются тематические карты, отражающие классификацию исследуемой акватории по компонентному и суммарному уровню загрязнения и по глубине. На основе полученных результатов делаются выводы об общем загрязнении исследуемой акватории. Приведён пример обработки алгоритмом данных, представляющих собой гиперспектральное изображение, полученное с космического аппарата (КА) «Ресурс-П» №2 и прошедшее предварительную радиометрическую и атмосферную коррекцию.

Об авторах

М. Н. Гурьева

Рязанский государственный радиотехнический университет

Автор, ответственный за переписку.
Email: maria_guryeva@mail.ru

инженер

Россия

Ю. Н. Журавель

Ракетно-космический центр «Прогресс»,
г. Самара

Email: d1133@samspace.ru

заместитель начальника отдела

Россия

Р. В. Тишкин

Особое конструкторское бюро «Спектр», г. Рязань

Email: roman.tishkin@mail.ru

кандидат технических наук
начальник отдела

Россия

Список литературы

  1. Демидова Л.А., Еремеев В.В., Мятов Г.Н., Тишкин Р.В., Юдаков А.А. Сегментация объектов по данным гиперспектральной съёмки Земли с использованием методов искусственного интеллекта // Цифровая обработка сигналов. 2013. № 4. С. 32-36.
  2. Космический аппарат «Ресурс-П» № 2.
  3. http://www.samspace.ru/products/earth_remote_sensing_satellites/ka_resurs_p2/
  4. Деркачева А.А., Тутубалина О.В. Эффективность атмосферных коррекций гиперспектральных снимков Hyperion в регионах с развитым растительным покровом // Современные проблемы дистанционного зондирования Земли из космоса. 2014. Т. 11, № 4. С. 360-368.
  5. Григорьева О.В., Шилин Б.В. Опыт оценки экологических характеристик акваторий морских портов по данным видеоспектральной аэросъемки // Современные проблемы дистанционного зондирования Земли из космоса. 2012. Т. 9, № 1. С. 156-166.
  6. Пименова Е.В. Химические методы анализа в мониторинге водных объектов. Пермь: Пермская государственная сельскохозяйственная академия, 2011. 138 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение, 2017

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах