Thermal entanglement in two-atom Tavis–Cummings model with taking into account the dipole-dipole interaction

Cover Page

Cite item

Abstract

Background. Interest in the study of entangled states of systems of natural and artificial atoms (qubits) interacting with selected modes of microwave resonators is associated with their use as logic elements of quantum computers. At the same time, the most important task of the physics of quantum computing is the choice of the most effective mechanisms for manipulating and controlling the entangled states of qubits in such devices. Aim. The dynamics of the entanglement of two dipole-coupled superconducting Josephson qubits induced by a thermal noise of a coplanar resonator is studied for various initial states of the qubits. Methods. Based on the exact solution of the quantum Liouville equation for the whole density matrix of the system under consideration, the time behavior of the qubit entanglement parameter (negativity) is found for chaotic thermal, pure separable, and entangled initial states of qubits. Results. It is shown that the entanglement of qubits induced by the thermal noise of the resonator is possible for both the chaotic thermal states and separable states of qubits, except the case when both qubits are excited. It has also been found that, for small values of the dipole–dipole interaction parameter, taking this interaction into account leads to an increase in the degree of entanglement. For values of the dipole-dipole interaction parameter greater than some limit value, the opposite effect takes place. It is found that for entangled initial states of qubits, the inclusion of direct interaction has a small effect on the entanglement dynamics. It is shown that the initial coherence of qubit states can lead to a significant increase in the degree of their entanglement in the presence of a dipole–dipole interaction. Conclusion. The dipole-dipole interaction can be used as an effective mechanism for qubits entanglement manipulation and controlling.

Full Text

Introduction

The study of entangled states is currently one of the most pressing problems of quantum theory because of the wide possible applications of such states in quantum information science, quantum teleportation, quantum cryptography, and quantum dense coding [1–3]. A method for generating atomic entangled states is the interaction of natural and artificial atoms (impurity spins, superconducting Josephson rings, quantum dots, etc.) with the quantum electromagnetic fields of resonators [4]. At the same time, special attention has recently been paid to studying the possibility of entangling atoms with light by interaction with a thermal electromagnetic field. It is generally believed that the thermal state of this field contains minimal information about the system and can be considered “chaotic.” Moreover, multimode thermal fields have often been used to analyze the decoherence of quantum atomic systems. However, Kim et al. [5] showed that such an uncorrelated thermal field can entangle atoms in a resonator. They studied the evolution of two identical two-level atoms interacting resonantly with a single-mode thermal field in a lossless resonator and calculated the atomic entanglement parameter as a function of time. The degree of entanglement of atoms depends considerably on their initial states. If one atom is initially in the ground state and the other atom is in the excited state, then the thermal field can lead to a noticeable degree of atom–atom entanglement. In contrast, if both atoms are initially in excited states, then in the resonant approximation, their entanglement is impossible. A similar effect occurs for the diatomic model with multiphoton transitions [6; 7]. Zang [8] generalized the work of Kim et al. [5] to the case where the transition frequencies in atoms are slightly detuned from the frequency of the thermal field mode of the resonator and studied how such detuning affects atomic entanglement. This study revealed that with a suitable choice of detuning for the initial state of the atomic system, where one atom is in the excited state and the other atom is in the ground state, the entanglement of atoms can approach the maximum value. In addition, substantial atomic entanglement can be achieved even when both atoms are initially in excited states.

The dipole–dipole interaction of atomic systems is well-known as a natural mechanism for the occurrence of atomic entanglement. The dipole–dipole interaction of atoms, in particular, can considerably increase the degree of entanglement of two atoms interacting with the thermal field mode in an ideal resonator through single-photon transitions [9] and two-photon degenerate [13] and nondegenerate transitions [10; 11]. For artificial atoms, the dipole–dipole interaction can be considerably greater than that for ordinary atoms and ions. For example, for superconducting Josephson qubits, the effective dipole–dipole constant (inductive interaction of superconducting qubits) can considerably exceed not only the qubit–photon interaction constant but also the initial transition energy between the levels of the qubit itself [12; 13]. An interesting consideration is the influence of the dipole–dipole interaction of qubits in various initial states on the maximum degree of their resonator thermal field-induced entanglement. When studying the exact dynamics of qubits in a resonator (references in [14–17]), the authors used various methods to solve the quantum time Schrödinger equation for the full wave function or the quantum Liouville’ equation for the full density matrix, depending on the initial states of the qubits and the resonator field. In contrast, for the resonant two-qubit model with single-photon transitions and direct dipole–dipole interaction of qubits, an exact solution to the equation for the evolution operator was found [9]. In this case, the authors of this study used the revealed exact solution for the evolution operator to calculate the parameter of qubit entanglement induced by the thermal field of the resonator for the simplest case, one of the qubits is prepared in an excited state and the other is in the ground state.

In this work, we investigated the influence of the dipole–dipole interaction of qubits on the dynamics of their entanglement in a two-qubit resonance single-photon model induced by the resonator thermal field for various initial states of qubits, namely, Bell-type, thermal, and coherent entangled states.

1. Model and its exact solution

Let us consider two identical superconducting qubits and B that resonantly interact with the common quantum single-mode electromagnetic field of an ideal microwave coplanar resonator. We will consider the direct dipole–dipole interaction of qubits because, for superconducting qubits, the constant of this interaction can substantially exceed the qubit–field interaction constant. The Hamiltonian of the interaction of the system in the rotating wave approximation can then be represented as

H=giA,B(σi+a+a+σi)+J(σA+σB+σAσB+) (1)

Here, σ1z and σ2z are the inversion operators for qubits A and B, respectively; σi+=|+ii| and σi=|ii+| are the operators of transitions between the excited |+i and ground |i states in the i-th qubit (i=A,B), while a+ and a are the creation and destruction operators of photons of the resonator mode of the field; g is the interaction constant between the qubit and the field; and J is the constant of direct dipole–dipole interaction of qubits.

Let us assume that the resonator field is initially in a single-mode state with a density matrix

ρF(0)=pn|nn|, (2)

where the weight coefficients are pn=n¯n/(1+n¯)n+1. Here, n¯ is the average number of thermal photons in the resonator n¯=(exp[ωi/kBT]1]1, where kB is Boltzmann’s constant, and T is the equilibrium temperature of the resonator.

As the initial state of the qubits, we choose

a) pure separable coherent states of the form

|Ψ(0)AB=|Ψ(0)A|Ψ(0)B, (3)

|Ψ(0)A=cosθA|+A+sinθA|A,

|Ψ(0)B=cosθB|+B+sinθB|B,

where θi are the parameters that determine the initial coherence of the i-qubit state;

b) mixed states with a density matrix of the form

ρ(0)AB=i=A,Bλ|+ii+|+(1λ)|ii|, (4)

where λ1λ=exp[ω0/kBT] and ω0 is the resonant frequencies of the transition between the first excited state and the ground state of the qubit; and

  1. c) Bell-type entangled states

|Ψ(0)AB=cosθ|+,+sinθ|,+, (5)

|Ψ(0)AB=cosθ|+,++sinθ|,, (6)

where θ is a parameter that determines the initial degree of qubit entanglement.

The time-dependent density matrix of the system under study can be determined by solving the following quantum Liouville equation:

iρt=[H,ρ] (7)

with the initial condition

ρ(0)=ρAB(0)ρF(0).

In the case of the pure initial states of qubits,

ρAB(0)=|ΨAB ABΨ|.

Let us represent the formal solution of Eq. (7) as

ρ(t)=U+(t)ρ(0)U(t),

where the evolution operator of a system with the Hamiltonian of Eq. (1) in the basis

|,, |+,, |,+, |+,+

has the form [12]

U(t)=U11U12U13U14U21U22U23U24U31U32U33U34U41U42U43U44, (8)

where

U11=1+2aAλa+, U14=2aAλa,

U41=2a+Aλa+, U44=1+2a+Aλa,

U12=U13=aBθ, U21=U31=Bθa+,

U24=U34=Bθa, U42=U43=a+Bθ,

U22=U33=expig2(α+θ)t4θ×

×[1exp(igθt)]α+2θexp(ig2(3α+θ)t]+θ[1+exp(igθt)],

U23=U32=expig2(α+θ)t4θ×

×[1exp(igθt)]α2θexp(ig2(3α+θ)t]+θ[1+exp(igθt)],

A=expigα2tcosgθ2t+iαθsingθ2t1,

B=expig2(α+θ)t1exp(igθt),

α=Jg,λ=2(aa++a+a),θ=8(aa++a+a)+α2.

Having the evolution operator of Eq. (8), we can determine an explicit form of the temporal density matrix of the system under consideration for any initial states of the qubits. In this study, we use the exact solution of the quantum Liouville equation to study the time dynamics of qubit entanglement. To date, strict entanglement criteria have been obtained in quantum information science for two-qubit systems. One of these criteria is the Peres–Horodecki criterion or negativity [18; 19]. In this study, to quantify the degree of qubit entanglement, we use negativity in the form

ε=2μi, (9)

where μi are the negative eigenvalues of the reduced two-qubit density matrix partially transposed over the variables of one qubit ρABT1(t). The two-qubit reduced density matrix can be determined by averaging the full density matrix of the system over the field variables:

ρAB(t)=TrFρ(t).

Using the explicit form of the evolution operator after rather cumbersome calculations for the reduced qubit density matrix, we obtain in a two-qubit basis |,, |+,, |,+, |+,+.

ρA(t)=ρ11(t)ρ12(t)ρ13(t)ρ14(t)ρ12*(t)ρ22(t)ρ23(t)ρ24(t)ρ13*(t)ρ23*(t)ρ33(t)ρ34(t)ρ14*(t)ρ24*(t)ρ34*(t)ρ44(t), (10)

ρ11(t)=n=1pnρ111+2(n+1)Qn+1(t)++(ρ11+ρ23+ρ32+ρ33)|Sn|2n+ρ444(n1)Qn1(t),

ρ12(t)=n=0pn(ρ24+ρ24)Sn(t)Sn1*(t)n++(ρ12U22,n*+ρ13U23,n*)1+2(n+1)Qn+1(t),

ρ12(t)=n=0pn(ρ24+ρ24)Sn(t)Sn1*(t)n++(ρ12U23,n*+ρ13U22,n*)1+2(n+1)Qn+1(t),

ρ12(t)=n=1pnρ141+2(n+1)Qn+1(t)1+2nQn1(t),

ρ22(t)=n=0pnρ11(n+1)Sn+1(t)2++ρ44nSn1(t)2+ρ22|U22,n|2+

+n=0pn[ρ23U22,nU23,n*++ρ23*U23,nU22,n*+ρ33|U23,n|2],

ρ33(t)=n=1pnρ11(n+1)Sn+1(t)2+ρ44nSn1(t)2+

+n=1pn[ρ22|U23,n|2+ρ23U23,nU22,n*++ρ23*U22,nU23,n*+ρ33|U22,n|2],

ρ33(t)=n=1pnρ11(n+1)Sn+1(t)2+ρ44nSn1(t)2+

+n=1pn[ρ22|U23,n|2+ρ23U23,nU22,n*++ρ23*U22,nU23,n*+ρ33|U22,n|2],

ρ24(t)=n=1pn(ρ24U22,n+ρ34U23,n)2nQn1(t)+1++(ρ12+ρ13)(n+1)Sn+1(t)Sn1*(t),

ρ24(t)=n=1pn(ρ34U22,n+ρ24U23,n)2nSn1(t)+1*++(ρ12+ρ13)(n+1)Sn+1(t)Sn1*(t),

ρ44(t)=1ρ11(t)ρ22(t)ρ33(t).

Here,

U23,n(t)=Expi(α+θn)2t4θn(1Exp[iθnt])α2θnExpi(3α+θn)t2+θn(1+Exp[iθnt]),

U22,n=Expi(α+θn)2t4θn(1Exp[iθnt])α++2θnExpi(3α+θn)t2+θn(1+Exp[iθnt]),

Qn=Anλn,Sn=Bnθn,

An=expigα2tcosgθn2t+iαθnsingθn2t1,

Bn=expig2(α+θn)t1exp(igθnt),

and

λn=2(2n+1),θn=8(2n+1)+α2.

The initial values of the elements of the two-qubit density matrix for the coherent initial state of qubits of Eq. (3), the thermal state of Eq. (4), and the entangled states of Eqs. (5) and (6) are given as follows:

ρ11=sinθAsinθB,ρ12=ρ13=ρ14=ρ24=ρ34=0,

ρ44(0)=cosθAcosθB,ρ23(0)=cosθAsinθB,

ρ32(0)=cosθsinθ,ρ33(0)=sin2θ;

ρ12=ρ13=ρ14=ρ23=ρ24=ρ34=0,

ρ11=λ2,ρ22=ρ33=λ(1λ),ρ44=(1λ)2;

ρ11=ρ12=ρ13=ρ14=ρ24=ρ34=0,

ρ22(0)=cos2θ,ρ23(0)=cosθsinθ,

ρ32(0)=cosθsinθ,ρ33(0)=sin2θ

and

ρ11(0)=sin2θ,ρ44(0)=cos2θ,ρ23(0)=cosθsinθ,

ρ12=ρ13=ρ14=ρ22=ρ24=ρ33=ρ34=0.

The two-qubit matrix for Eq. (10), partially transposed over the variables of one qubit, has the form

ρAT(t)=ρ11ρ12ρ13ρ23*ρ12*ρ22ρ14*ρ24ρ13*ρ14ρ33ρ34ρ23ρ24*ρ34*ρ34. (11)

We have revealed explicit equations for the eigenvalues of the matrix of Eq. (11) partially transposed over the variables of one qubit. In this work, these equations are not given, because of their extreme cumbersomeness. In this case, all four eigenvalues can take negative values and, accordingly, must be considered in the sum of Eq. (9). The results of the computer modeling of the negativity parameter are presented in Figs. 1–6.

2. Results and discussion

Figure 1 presents the negativity as a function of dimensionless time gt for the coherent initial state of Eq. (3) with θ1=π/4, θ2=π/4 and the incoherent initial state of qubits of the form |+,. The parameter of the dipole–dipole interaction of qubits is chosen as α=0,1. The average number of photons is n¯=10. The figure clearly shows that the initial coherence of qubits substantially increases the degree of entanglement of qubits, induced by the resonator thermal field, compared with the initial states without coherence. Figure 2 presents the negativity as a function of dimensionless time for the coherent initial state of Eq. (3) with θ1=π/4, θ2=π/4 and the incoherent initial state of qubits of the form |+,. The parameter of the dipole–dipole interaction of qubits is chosen as α=0,1. The average number of photons is n¯=20. Figures 1 and 2 demonstrate that with increasing thermal field intensity, the maximum degree of qubit entanglement decreases much more strongly for noncoherent initial states.

 

Fig. 1. Negativity as a function of dimensionless time gt for the coherent state (3) with θ1=π/4, θ2=π/4 (solid line) and the incoherent state |+, (dashed line). Dipole-dipole communication parameter α=0,1. Average number of thermal photons n¯=10

Рис. 1. Отрицательность как функция безразмерного времени gt для когерентного состояния (3) с θ1=π/4, θ2=π/4 (сплошная линия) и некогерентного состояния |+, (штриховая линия). Параметр диполь-дипольного взаимодействия α=0,1. Среднее число тепловых фотонов n¯=10

 

Fig. 2. Negativity as a function of dimensionless time gt for the coherent state (3) with θ1=π/4, θ2=π/4 (solid line) and incoherent state |+, (dashed line). Dipole-dipole communication parameter α=0,1. Average number of thermal photons n¯=20

Рис. 2. Отрицательность как функция безразмерного времени gt для когерентного состояния (3) с θ1=π/4, θ2=π/4 (сплошная линия) и некогерентного состояния |+, (штриховая линия). Параметр диполь-дипольного взаимодействия α=0,1. Среднее число тепловых фотонов n¯=20

 

Figure 3 presents negativity as a function of dimensionless time for the coherent initial state of Eq. (3) with θ1=π/4, θ2=π/4 in the absence of dipole–dipole interaction of qubits (dashed line) and in the presence of such interaction in the case of α=0,1 (solid line). The average number of photons is n¯=10. The figure reveals that in the case of an initial coherent state, the degree of entanglement of qubits sharply increases only in the presence of dipole–dipole interaction of qubits. Thus, the initial coherence of qubit states and dipole–dipole interaction can be simultaneously used to effectively control the degree of their entanglement. This effect can be used to implement effective schemes for using entangled states in the physics of quantum computing. Figure 4 demonstrates negativity as a function of dimensionless time for a chaotic thermal initial distribution of qubits by the energy level of Eq. (4) with λ=0,005. Even for a chaotic initial state of qubits, the chaotic thermal field of the resonator can induce qubit entanglement. For this state, the maximum degree of entanglement of qubits is registered when λ=0 (i.e., for the state |,). In this case, as shown in Fig. 4, the inclusion of dipole–dipole interaction increases the maximum degree of entanglement of qubits. For states with λ>0,01 the entanglement of qubits during their evolution in the thermal resonator does not occur. Figures 5 and 6 show the negativity as a function of dimensionless time for the Bell entangled states of qubits of Eqs. (5) and (6), respectively, selecting in both cases θ=π/4. The dashed and solid lines in the figures correspond to the model without dipole–dipole interaction of qubits and the model with dipole-coupled qubits in the case of α=1, respectively. The average number of photons is n¯=1. The figures clearly demonstrate that in the case of initial entangled states of qubits, the inclusion of dipole–dipole interaction does not affect the nature of the negativity behavior or the maximum values of the degree of entanglement of qubits.

 

Fig. 3. Negativity as a function of dimensionless time gt for the coherent state (3) with θ1=π/4, θ2=π/4. The dipole-dipole interaction parameter α=0 (dashed line) and α=0,2 (solid line). Average number of thermal photons n¯=10

Рис. 3. Отрицательность как функция безразмерного времени gt для когерентного состояния (3) с θ1=π/4, θ2=π/4. Параметр диполь-дипольного взаимодействия α=0 (штриховая линия) и α=0,2 (сплошная линия). Среднее число тепловых фотонов n¯=10

 

Fig. 4. Negativity as a function of dimensionless time gt for the mixed state of qubits (4) with λ=0,005. Dipole-dipole interaction parameter α=0 (solid line) and α=0,5 (dashed line). Average number of thermal photons n¯=0,5

Рис. 4. Отрицательность как функция безразмерного времени gt для смешанного состояния кубитов (4) с λ=0,005. Параметр диполь-дипольного взаимодействия α=0 (сплошная линия) и α=0,5 (штриховая линия). Среднее число тепловых фотонов n¯=0,5

 

Fig. 5. Negativity as a function of dimensionless time gt for Bell entangled (5) with θ=π/4. Dipole-dipole interaction parameter α=0 (dashed line) and α=1 (solid line). Average number of thermal photons n¯=1

Рис. 5. Отрицательность как функция безразмерного времени gt для белловского перепутанного (5) с θ=π/4. Параметр диполь-дипольного взаимодействия α=0 (штриховая линия) и α=1 (сплошная линия). Среднее число тепловых фотонов n¯=1

 

Fig. 6. Negativity as a function of dimensionless time gt for Bell entangled (6) with θ=π/4. Dipole-dipole interaction parameter α=0 (dashed line) and α=1 (solid line). Average number of thermal photons n¯=1

Рис. 6. Отрицательность как функция безразмерного времени gt для белловского перепутанного (6) с θ=π/4. Параметр диполь-дипольного взаимодействия α=0 (штриховая линия) и α=1 (сплошная линия). Среднее число тепловых фотонов n¯=1

 

Conclusion

In this study, we revealed an exact solution to the quantum equation for the evolution of a system of two dipole-coupled superconducting qubits interacting with the quantum thermal electromagnetic field mode of an ideal resonator for coherent, chaotic, and entangled initial states of Bell-type qubits. On the basis of the exact solution of the evolution equation, the qubit entanglement parameter (negativity) could be calculated in analytical form. The results of computer modeling of negativity for the initial coherent state of qubits show that when analyzing the dipole–dipole interaction, considering the initial coherence of the states of qubits leads to a substantial increase in the maximum degree of their entanglement. The thermal field of the resonator was found to even induce the entanglement of qubits in the chaotic initial state. These effects can be used to effectively control the degree of entanglement of qubits, which is necessary for quantum information processing. If the initial states of qubits are entangled, including dipole–dipole interaction does not substantially affect the entanglement of qubits.

×

About the authors

Eugene K. Bashkirov

Samara National Research University

Author for correspondence.
Email: bashkirov.ek@ssau.ru
ORCID iD: 0000-0003-2569-1322

Doctor of Physical and Mathematical Sciences, professor of the Department of General and Theoretical Physics

Russian Federation, Samara

References

  1. I. Buluta, S. Ashhab, and F. Nori, “Natural and artificial atoms for quantum computation,” Rep. Prog. Phys., vol. 74, no. 10, p. 104401, 2011, doi: https://doi.org/10.1088/0034-4885/74/10/104401.
  2. Z.-L. Xiang et al., “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys., vol. 85 (2), pp. 623–653, 2013, doi: https://doi.org/10.1103/RevModPhys.85.623.
  3. I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simulation,” Rev. Mod. Phys., vol. 88 (1), pp. 153–185, 2014, doi: https://doi.org/10.1103/RevModPhys.86.153.
  4. X. Gu et al., “Microwave photonics with superconducting quantum circuits,” Phys. Repts., vol. 718–719, pp. 1–102, 2017, doi: https://doi.org/10.1016/j.physrep.2017.10.002.
  5. M. S. Kim et al., “Entanglement induced by a single-mode heat environment,” Phys. Rev., vol. A65 (4), p. 040101, 2002, doi: https://doi.org/10.1103/PhysRevA.65.040101.
  6. L. Zhou and H. S. Song, “Entanglement induced by a single-mode thermal field and criteria for entanglement,” J. Opt., vol. B4, pp. 425–429, 2002, doi: https://doi.org/10.1088/1464-4266/4/6/310.
  7. E. K. Bashkirov, “Entanglement induced by the two-mode thermal noise,” Laser Phys. Lett., vol. 3, no. 3, pp. 145–150, 2006, doi: https://doi.org/10.1002/lapl.200510081.
  8. B. Zhang, “Entanglement between two qubits interacting with a slightly detuned thermal feld,” Opt. Commun., vol. 283, pp. 4676–4679, 2010, doi: https://doi.org/10.1016/j.optcom.2010.06.094.
  9. L. S. Aguiar et al., “The entanglement of two dipole-dipole coupled in a cavity interacting with a thermal field,” J. Opt., vol. B7, pp. S769‒S771, 2005, doi: https://doi.org/10.1088/1464-4266/7/12/049.
  10. X.-P. Liao et al., “The entanglement of two dipole-dipole coupled atoms interacting with a thermal field via two-photon process,” Chin. Phys., vol. B17, no. 6, pp. 2137‒2142, 2008, doi: https://doi.org/10.1088/1674-1056/17/6/032.
  11. E. K. Bashkirov and M. P. Stupatskaya, “The entanglement of two dipole-dipole coupled atoms induced by nondegenerate two-mode thermal noise,” Laser Phys., vol. 19, no. 3, pp. 525–530, 2009, doi: https://doi.org/10.1134/S1054660X09030281.
  12. A. Izmalkov and al. et, “Evidence for entangled states of two coupled flux qubits,” Phys. Rev. Lett., vol. 93, p. 037003, 2004, doi: https://doi.org/10.1103/PhysRevLett.93.037003.
  13. J. B. Majer et al., “Spectroscopy on two coupled flux qubits,” Phys. Rev. Lett., vol. 94, p. 090501, 2005, doi: https://doi.org/10.1103/PhysRevLett.94.090501.
  14. E. K. Bashkirov, “Entanglement of two dipole-coupled qubits interacting with a detuned cavity thermal field,” Proc. SPIE, vol. 11066, p. 110660K, 2019, doi: https://doi.org/10.1117/12.2522476.
  15. E. K. Bashkirov, “Dynamics of entanglement of atoms with two-photon transitions induced by a thermal field,” Komp’yuternaya optika, vol. 44, no. 2, pp. 167–176, 2020, doi: https://doi.org/10.18287/2412-6179-CO-595. (In Russ.)
  16. E. K. Bashkirov and M. Guslyannikova, “Thermal entanglement in the double Jaynes–Cummings model,” Physics of Wave Processes and Radio Systems, vol. 23, no. 2, pp. 7–13, 2020, doi: https://doi.org/10.18469/1810-3189.2020.23.2.7-13. (In Russ.)
  17. E. K. Bashkirov, “Entanglement of two superconducting qubits induced by the thermal noise of a resonator with a Kerr medium in the presence of initial atomic coherence,” Physics of Wave Processes and Radio Systems, vol. 25, no. 1, pp. 7–15, 2022, doi: https://doi.org/10.18469/1810-3189.2022.25.1.7-15. (In Russ.)
  18. A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett., vol. 77, pp. 1413–1415, 1996, doi: https://doi.org/10.1103/PhysRevLett.77.1413.
  19. R. Horodecki, M. Horodecki, and P. Horodecki, “Separability of mixed states: Necessary and sufficient condition,” Phys. Lett., vol. A223, pp. 333–339, 1996, doi: https://doi.org/10.1016/S0375-9601(96)00706-2.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Negativity as a function of dimensionless time  for the coherent state (3) with  (solid line) and the incoherent state  (dashed line). Dipole-dipole communication parameter  Average number of thermal photons 

Download (98KB)
3. Fig. 2. Negativity as a function of dimensionless time  for the coherent state (3) with  (solid line) and incoherent state  (dashed line). Dipole-dipole communication parameter  Average number of thermal photons 

Download (67KB)
4. Fig. 3. Negativity as a function of dimensionless time  for the coherent state (3) with   The dipole-dipole interaction parameter  (dashed line) and  (solid line). Average number of thermal photons 

Download (58KB)
5. Fig. 4. Negativity as a function of dimensionless time  for the mixed state of qubits (4) with  Dipole-dipole interaction parameter  (solid line) and  (dashed line). Average number of thermal photons 

Download (54KB)
6. Fig. 5. Negativity as a function of dimensionless time  for Bell entangled (5) with  Dipole-dipole interaction parameter  (dashed line) and  (solid line). Average number of thermal photons 

Download (101KB)
7. Fig. 6. Negativity as a function of dimensionless time  for Bell entangled (6) with  Dipole-dipole interaction parameter  (dashed line) and  (solid line). Average number of thermal photons 

Download (72KB)

Copyright (c) 2023 Bashkirov E.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ФС 77 - 68199 от 27.12.2016.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies