Analysis of the influence of dispersion of metamaterials in a cylindrical Luneberg lens with extended focus


Cite item

Full Text

Abstract

Cylindrical Lunebeg lenses allow azimuthal scanning in a wide sector of angles. The article discusses a cylindrical Luneberg lens with an out-of-focus parallel printed circuit boards made of thin fiberglass (FR-4) with an etched H-shaped metamaterial structure. The distribution of the electric field in the azimuthal plane is shown when a linearly polarized plane wave is incident on the lens surface parallel to the printed circuit boards. The dependence of the focal length on the frequency is shown. Conclusions are drawn about the effect of dispersion on the focal length. To clarify the value of the focal length, the directional characteristics of the antenna system are considered when the focal length is changed. Directional characteristics are investigated when the feed is rotated in the azimuthal plane. The results presented in the article are planned to be used to create broadband Luneberg lenses from metamaterials.

About the authors

Yuri G. Pasternak

Voronezh State Technical University; MERC AF «N.E. Zhukovsky and Y.A. Gagarin Air Force Academy»; JSC «IRCOS»

Author for correspondence.
Email: pasternakyg@mail.ru

Evgeny A. Rogozin

MERC AF «N.E. Zhukovsky and Y.A. Gagarin Air Force Academy»

Email: evgenirogozin@yandex.ru

Ruslan E. Rogozin

Voronezh State Technical University

Email: ruslan-96-01-09@mail.ru

Sergei M. Fedorov

Voronezh State Technical University

Email: fedorov_sm@mail.ru

References

  1. Luneburg R.K. Mathematical Theory of Optics. Providence: Brown University Press, 1944, 401 p.
  2. Kjun R. Microwave Antennas. Leningrad: Sudostroenie, 1967, 518 p. (In Russ.)
  3. Drabkin A.L., Zuzenko V.L., Kislov A.G. Antenna Feeder Devices. Moscow: Sovetskoe radio, 1974, 536 p. (In Russ.)
  4. Peeler G.D.M., Coleman H. Microwave stepped-index Luneberg lenses. IRE Transactions on Antennas and Propagation, 1958, vol. 6, no. 2, pp. 202–207. DOI: https://doi.org/10.1109/TAP.1958.1144575.
  5. Bor J. et al. Foam based Luneburg lens antenna at 60 GHz. Progress in Electromagnetics Research Letters, 2014, vol. 44, pp. 1–7. DOI: https://doi.org/10.2528/PIERL13092405.
  6. Peeler G.D.M., Archer D.F. A two-dimensional microwave Luneberg lens. Transactions of the IRE Professional Group on Antennas and Propagation, 1953, vol. 1, no. 1, pp. 12–23. DOI: https://doi.org/10.1109/T-AP.1953.27321.
  7. Sato K., Ujiie H. A plate Luneberg lens with the permittivity distribution controlled by hole density. Electronics and Communications in Japan (Part I: Communications), 2002, vol. 85, no. 9, pp. 1–12. DOI: https://doi.org/10.1002/ecja.1120.
  8. Sayanskiy A. et al. Broadband 3-D Luneburg lenses based on metamaterials of radially diverging dielectric rods. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, pp. 1520–1523. DOI: https://doi.org/10.1109/LAWP.2016.2647383.
  9. Xin H., Liang M. 3-D-printed microwave and THz devices using polymer jetting techniques. Proceedings of the IEEE, 2017, vol. 105, no. 4, pp. 737–755. DOI: https://doi.org/10.1109/JPROC.2016.2621118.
  10. Pfeiffer C., Grbic A. A printed, broadband Luneburg lens antenna. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 9, pp. 3055–3059. DOI: https://doi.org/10.1109/TAP.2010.2052582.
  11. Makarov O.Yu. et al. Influence of dispersion of metamaterials on the characteristics of a Luneberg lens. Radiotehnika, 2020, vol. 84, no. 6 (12), pp. 42–48. DOI: https://doi.org/10.18127/j00338486-202006(12)-08. (In Russ.)
  12. Choi M. et al. A terahertz metamaterial with unnaturally high refractive index. Nature, 2011, vol. 470, no. 7334, pp. 369–373. DOI: https://doi.org/10.1038/nature09776.
  13. Smith D.R. et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review. E-Statistical, Nonlinear, and Soft Matter Physics, 2005, vol. 71, no. 3, p. 036617. DOI: https://doi.org/10.1103/PhysRevE.71.036617.
  14. Arslanagić S. et al. A review of the scattering parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization. IEEE Antennas and Propagation Magazine, 2013, vol. 55, no. 2, pp. 91–106. DOI: https://doi.org/10.1109/MAP.2013.6529320.
  15. Zelkin E.G., Petrova R.A. Lens Antennas. Moscow: Sovetskoe radio, 1974, 280 p. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Pasternak Y., Rogozin E., Rogozin R., Fedorov S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ФС 77 - 68199 от 27.12.2016.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies