The entanglement of atoms with two-photon transitions in the presence of ac Stark shift of energy levels
- Authors: Bashkirov E.1, Guslyannikova M.1
-
Affiliations:
- Samara National Research University
- Issue: Vol 22, No 3 (2019)
- Pages: 36-43
- Section: Articles
- URL: https://journals.ssau.ru/pwp/article/view/7494
- DOI: https://doi.org/10.18469/1810-3189.2019.22.3.36-43
- ID: 7494
Cite item
Full Text
Abstract
In this paper, we investigated the dynamics of atomic entanglement in a quantum system consisting of two identical two-level atoms (qubits) resonantly interacting with a mode of a thermal cavity field through degenerate two-photon transitions, in the presence of a Stark energy level shift. An analytical expression is obtained for the atom entanglement (negativity) parameter for separable and entangled initial states of atoms. The influence of the Stark shift on the degree of atom-atom entanglement is considered. It is established that the Stark shift leads to a significant increase in the degree of atom entanglement in the case of separable initial states of atoms and to stabilization of atomic entanglement in the case of entangled initial states of atoms.
About the authors
E.K. Bashkirov
Samara National Research University
Author for correspondence.
Email: bash@samsu.ru
M.O. Guslyannikova
Samara National Research University
Email: ssau@ssau.ru
References
- Xiang Z.-L. [et al.] Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys, 2013, vol. 85, pp. 623–653. DOI: https://doi.org/10.1103/RevModPhys.85.623 [in English].Georgescu I.M., Ashhab S., Nori F. Quantum simulation. Rev. Mod. Phys, 2014, vol. 88, pp. 153–186. DOI: https://doi.org/10.1103/RevModPhys.86.153 [in English].Gu X. [et al.] Microwave photonics with superconducting quantum circuits. Phys. Repts, 2017, vol. 718-719, pp. 1–102. DOI: https://doi.org/10.1016/j.physrep.2017.10.002 [in English].Wendin G. Quantum information processing with superconducting circuits: a review. Rep. Prog. Phys, 2017. vol. 80. pp. 106001. DOI: https://doi.org/10.1088/1361-6633/aa7e1a [in English].Buluta I., Ashab S., Nori F. Neutral and artificial atoms for quantum computation. Rep. Prog. Phys, 2011, vol. 74, pp. 104401. DOI: https://doi.org/10.1088/0034-4885/74/10/104401 [in English].Shore B.W., Knight P.L. The Jaynes-Cummings model. J. Mod. Opt, 1993, vol. 40, pp. 1195–1238. DOI: https://doi.org/10.1080/09500349314551321 [in English].Larson J. Dynamics of the Jaynes-Cummings and Rabi models: Old wine in new bottles. Physica Scripta, 2007, vol. 76, pp. 146–160. DOI: https://doi.org/10.1088/0031-8949/76/2/007 [in English].Brune M. [et al.] Realization of a two-photon maser oscillator. Phys. Rev. Lett, 1987, vol. 59, pp. 1899–1902. DOI: https://doi.org/10.1103/PhysRevLett.59.1899 [in English].Puri R.R., Bullough R.K. Quantum electrodynamics of an atom making two-photon transitions in an ideal cavity. J. Opt. Soc. Am. B, 1988, vol. 5(10), pp. 2021–2018. DOI: https://doi.org/10.1364/JOSAB.5.002021 [in English].Abdel-Aty M., Moya-Cessa M.H. Sudden death and long-lived entanglement of two trapped ions. Phys. Lett, 2007, vol. 369(5–6), pp. 372–376. DOI: https://doi.org/10.1016/j.physleta.2007.05.003 [in English].Ghosh B., Majumdar A.S., Nayak N. Control of atomic entanglement by the dynamic Stark effect. J. Phys. B: At. Mol. Opt. Phys, 2008, vol. 41, pp. 065503. DOI: https://doi.org/10.1088/0953-4075/41/6/065503 [in English].Hu Y.-H., Fang M.-F. Control of entanglement between two atoms by the Stark shift. Chin. Phys. B, 2010, vol. 19(7), pp. 070302. DOI: https://doi.org/10.1088/1674-1056/19/7/070302 [in English].Zhang J.S., Chen A.X., Wu K.H. Influence of the Stark shift on entanglement sudden death and birth in cavity QED. Chin. Phys. Lett, 2011, vol. 28, pp. 010301. DOI: https://doi.org/10.1088/0256-307X/28/1/010301 [in English].Khalili E.M., Ahmed M.M.A., Obada A.-S.F. Entanglement of a two-level atom interacting with a new structure of a generalized nonlinear Stark shift via configuration. Int. J. Mod. Phys. B, 2011, vol. 25(19), pp. 2621–2636. DOI: https://doi.org/10.1142/S0217979211100898 [in English].Hu Y.H. [et al.] Effect of the Stark shift on entanglement in a double two-photon JC model. Journal of Modern Optics, 2008, vol. 55 (21), pp. 3551–3562. DOI: https://doi.org/10.1080/09500340802337382 [in English].Kun H.W., Huang Q.F., Zhang X.Q. Three-atom entanglement sudden death and birth in cavity QED with the influence of the Stark shift. Adv. Mat. Res, 2013, vol. 662, pp. 537–542. DOI: https://doi.org/10.4028/www.scientific.net/AMR.662.537 [in English].Hussain M., Ebubechukwu O.I.-O., Byrnes T. Geometric phase gate based on the ac Stark shift. Quan. Informa. Proc, 2015, vol. 14, pp. 943–950. DOI: https://doi.org/10.1007/s11128-014-0907-7 [in English].Korashy S., Abdel-Rady S., Osman A.-N.A. Influence of Stark shift and Kerr-like medium on the interaction of a two-level atom with two quantized field modes: A time-dependent system. Quant. Inf. Rev, 2017, vol. 5 (1), pp. 9–14. DOI: https://doi.org/10.18576/qir/050102 [in English].Pagel D., Alvermann A., Fehske H. Dynamic Stark effect, light emission, and entanglement generation in a laser-driven quantum optical system. Phys. Rev. A, 2017, vol. 95, pp. 013825 (1–14). DOI: https://doi.org/10.1103/PhysRevA.95.013825 [in English].Schuster D.I. [et al.] AC-Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett, 2005, vol. 94, pp. 123602(1–4). DOI: https://doi.org/10.1103/PhysRevLett.94.123602 [in English].Sank D. [et al.] Measurement-induced state transitions in a superconducting qubit: beyond the rotating wave approximation. Phys. Rev. Lett, 2016, vol. 117, pp. 190503. DOI: https://doi.org/10.1103/PhysRevLett.117.190503 [in English].Bashkirov E.K., Mastjugin M.S. Vlijanie dipol’-dipol’nogo vzaimodejstvija i atomnoj kogerentnosti na pereputyvanie dvuh atomov s vyrozhdennymi dvuhfotonnymi perehodami [The effect of dipole-dipole interaction and atomic coherence on the entanglement of two atoms with degenerate two-photon transitions]. Optika i spektroskopija [Optics and Spectroscopy], 2014, no. 4, pp. 678–683 [in Russian].Bashkirov E.K., Mastjugin M.S. Preputyvanie dvuh sverhprovodjaschih kubitov, vzaimodejstvujuschih s dvuhmodovym teplovym polem [The perturbation of two superconducting qubits interacting with a two-mode thermal field]. Komp’juternaja optika [Computer optics], 2013, no. 3, pp. 278–285 [in Russian].Bashkirov E.K., Litvinova D.V. Pereputyvanie kubitov pri nalichii atomnoj kogerentnosti [Entanglement of qubits in the presence of atomic coherence]. Komp’juternaja optika [Computer optics], 2014, no. 4, pp. 663–669 [in Russian].Bashkirov E.K. Thermal entanglement between a Jaynes-Cummings atom and an isolated atom. Intern. J. Theor. Phys, 2018, no. 57(12), pp. 3761–3771. DOI: https://doi.org/10.1007/s10773-018-3888-y [in English].Peres A. Separability criterion for density matrices. Phys. Rev. Lett, 1996, vol. 77, pp. 1413. DOI: https://doi.org/10.1103/PhysRevLett.77.1413 [in English].Horodecki R., Horodecki M., Horodecki P. Separability of mixed states: necessary and sufficient condition. Phys. Lett. A, 1996, vol. 223, pp. 333–339. DOI: https://doi.org/10.1016/S0375-9601(96)00706-2 [in English].