Finite-difference model of the fractional oscillator of Van der Pol


Cite item

Full Text

Abstract

The algorithm of numerical modeling of self-oscillating system, defined by the equation of motion with fractional order derivative is offered. To discretize in time the equation of motion method is used the invariance of impulse response of linear resonators in combination with the formulas of the fractional differential transforms of discrete harmonic functions. The example of modeling of process of establishing self-oscillations in the fractional oscillator is given. Discusses the transformation of the finite-difference computational algorithm in the object of nonlinear dynamics in discrete time. Are provided spectral and correlation characteristics of chaotic self-oscillations of the fractional oscillator of Van der Pol in discrete time.

About the authors

V.V. Zaitsev

Самарский университет

Author for correspondence.
Email: zaitsev@samsu.ru

Ar.V. Karlov

Самарский университет

Email: zaitsev@samsu.ru

A.N. Shilin

Самарский университет

Email: shilax@yandex.ru

E.Yu. Fedyunin

Самарский университет

Email: fedyunin_eduard@mail.ru

References

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Zaitsev V., Karlov A., Shilin A., Fedyunin E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ФС 77 - 68199 от 27.12.2016.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies