Study of digital diagram formation for optimum interference and noise reduction in antenna arrays of different shapes with directional radiators


Cite item

Abstract

In the paper the digital beamforming is examined in azimuth and elevation, which allows more accurate formation of nulls and maximum of the radiation pattern. The minimum variance distortionless response beamformer, the sample matrix inversion algorithm using regularization, and the null steering algorithms at the output of cylindrical, hemispherical and planar lattices are considered. The ratio of the useful signal power to the active interference plus noise resulting power and the bit error ratio at the output of digital antenna arrays are estimated depending on the directivity of the antenna elements and the number of averaging samples. It has been established that a hemispherical antenna array can significantly increase the transmission reliability in comparison with the considered ones, which will reduce the computational load without using complicated diagramming algorithms.

About the authors

Yury B. Nechaev

Voronezh State University

Email: vnn-61@mail.ru
1, Universitetskaya Square, Voronezh, 394018, Russia

Ilya V. Peshkov

Bunin Yelets State University

Author for correspondence.
Email: ilvpeshkov@gmail.com
28, 1, Kommunarov Street, Yelets, Lipetsk region, 399770, Russia

References

  1. Bogale E., Wang X., Le L.B. Massive MIMO and mmWave for 5G wireless HetNet: Potential benefits and challenges // IEEE Vehicular Technology Magazine. 2016. Vol. 11, no. 1. P. 64–75. DOI: https://doi.org/10.1109/MVT.2015.2496240
  2. Huang P., Xu W., Qi W. Two dimension digital beamforming preprocessing in multibeam ScanSAR // Progress in Electromagnetics Research. 2013. Vol. 136. P. 495–508. DOI: https://doi.org/10.2528/PIER12111502
  3. D beamforming: Performance improvement for cellular networks / H. Halbauer [et al.] // Bell Labs Technical Journal. 2013. Vol. 18, no. 2. P. 37–56. DOI: https://doi.org/10.1002/bltj.21604
  4. Nechaev Yu.B., Peshkov I.W., Fortunova N.A. The estimation of radio direction-finding performance in volume antenna arrays with directive radiators by music method // 2018 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). 2018. P. 1–6. DOI: https://doi.org/10.1109/SYNCHROINFO.2018.8457063
  5. Нечаев Ю.Б. Оценка границы Крамера – Рао выпуклых антенных решеток с направленными излучателями для радиопеленгации // Вестник НТУ «КПИ». Серия Радиотехника, Радиоаппаратостроение. 2018. Вып. 75. С. 16–24. DOI: https://doi.org/10.20535/RADAP.2018.75.16-24
  6. Eckhardt H., Klein S., Gruber M. Vertical antenna tilt optimization for LTE base stations // 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring). 2011. P. 1–5. DOI: https://doi.org/10.1109/VETECS.2011.5956370
  7. Budyak V.S., Vorfolomeev A.A. Space-time discretization in HF receiving multichannel antenna systems // 2011 International Siberian Conference on Control and Communications (SIBCON). 2011. P. 71–75. DOI: https://doi.org/10.1109/SIBCON.2011.6072598
  8. Balanis C., Ioannides P. Introduction to Smart Antennas. San Francisco: Morgan and Claypool Publishers, 2007. 174 p.
  9. Friedlander B., Tuncer T. Classical and Modern Direction-of-Arrival Estimation. Burlington: Academic Press, 2009. 456 p. DOI: https://doi.org/10.1016/C2009-0-19135-3
  10. The comparison of digital beamforming technology for optimal noise reduction in conformal antenna arrays with directive radiators / I.W. Peshkov [et al.] // 2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). 2020. P. 1–6. DOI: https://doi.org/10.1109/SYNCHROINFO49631.2020.9166041
  11. Direction of arrival estimation using directive antennas in uniform circular arrays / B.R. Jackson [et al.] // IEEE Transactions on Antennas and Propagation. 2015. Vol. 63, no. 2. P. 736–747. DOI: https://doi.org/10.1109/TAP.2014.2384044
  12. Monzingo R.A., Haupt R.L., Miller T.W. Introduction to Adaptive Arrays. Raleigh: SciTech Publishing Inc., 2011. 510 p.
  13. Godara L.C. Smart Antennas. Boca Raton: CRC Press, 2004. 448 p.
  14. Venkataramana D., Sanyal S.K., Misra I.S. Digital signal processor-based broad null beamforming for interference reduction // Circuits, Systems, and Signal Processing. 2016. Vol. 35, no. 1. P. 211–231. DOI: https://doi.org/10.1007/s00034-015-0056-y
  15. Chiba I., Takahashi T., Karasawa Y. Transmitting null beam forming with beam space adaptive array antennas // Proceedings of IEEE Vehicular Technology Conference (VTC). 1994. Vol. 3. P. 1498–1502. DOI: https://doi.org/10.1109/VETEC.1994.345345
  16. Friedlander B., Porat B. Performance analysis of a null-steering algorithm based on direction-of-arrival estimation // IEEE Transactions on Acoustics, Speech, and Signal Processing. 1989. Vol. 37, no. 4. P. 461–466. DOI: https://doi.org/10.1109/29.17526
  17. Van Veen B.D., Buckley K.M. Beamforming: A versatile approach to spatial filtering // IEEE ASSP Magazine. 1988. Vol. 5, no. 2. P. 4–24. DOI: https://doi.org/10.1109/53.665
  18. Minimum variance distortionless response beamformer with enhanced nulling level control via dynamic mutated artificial immune system / S.K. Tiong [et al.] // The Scientific World Journal. 2014. Vol. 2014. P. 164053. DOI: https://doi.org/10.1155/2014/164053
  19. A robust adaptive beamforming method based on the matrix reconstruction against a large DOA mismatch / J. Xie [et al.] // EURASIP Journal on Advances in Signal Processing. 2014. Vol. 2014, no. 1. P. 91. DOI: https://doi.org/10.1186/1687-6180-2014-91
  20. Carlson B.D. Covariance matrix estimation errors and diagonal loading in adaptive arrays // IEEE Transactions on Aerospace and Electronic Systems. 1988. Vol. 24, no. 4. P. 397–401. DOI: https://doi.org/10.1109/7.7181
  21. Du L., Li J., Stoica P. Fully automatic computation of diagonal loading levels for robust adaptive beamforming // IEEE Transactions on Aerospace and Electronic Systems. 2010. Vol. 46, no. 1. P. 449–458. DOI: https://doi.org/10.1109/TAES.2010.5417174

Copyright (c) 2022 Nechaev Y.B., Peshkov I.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies