Cite item

Full Text


The present paper is aimed of experimental technique of local incompatible deformations’ identification in thin layers obtained as a result of electrocrystallization. The process of electrocrystallization is carried on thin substrates. Changes in time of form of these thin substrates are registered during the experiment. Identification of local incompatible deformations’ parameters is carried out from the condition of the minimum deflection of experimentally detected displacements and displacements that were determined by theoretical relations. As such a relationship the solution of a boundary value problem for a layer by layer growing plate is used in the paper. Significant difference of suggested technique from known methods is that testing electrocrystallization is carried out in areas of various forms. It allows to provide analysis of the influence that corner points of deposition area’s boundary have on incompatible deformations caused by electrochemical process.

About the authors

P. S. Bychkov,

IPMech RAS, 101-1, Prospect Vernadskogo, Moscow, 119526, Russian Federation.

Author for correspondence.
Email: morenov.sv@ssau.ru
ORCID iD: 0000-0003-2251-1699

junior researcher, Laboratory of modelling in solid mechanics

Russian Federation

S. A. Lychev

IPMech RAS, 101-1, Prospect Vernadskogo, Moscow, 119526, Russian Federation.

Email: morenov.sv@ssau.ru
ORCID iD: 0000-0001-7590-1389

Doctor of Physical and Mathematical Sciences, associate professor, Laboratory of Mechanics of Technological Processes

Russian Federation

D. K. Bout

Bauman Moscow State Technical University

Email: morenov.sv@ssau.ru
ORCID iD: 0000-0001-8390-7684


Russian Federation


  1. Gamburg Yuliy D., Zangari G. Theory and practice of metal electrodeposition. New York: Springer Science & Business Media, 2011. Available at: https://b-ok.cc/book/1234360/f760b6.
  2. Fischer H. Elektrolytische Abscheidung und Elektrokristallisation von Metallen. Springer-Verlag Berlin Heidelberg, 1954. doi: 10.1007/978-3-642-86549-7.
  3. Bockris J. O’M., Razumney G.A. Fundamental aspects of electrocrystallization. Springer US, 1967. doi: 10.1007/978-1-4684-0697-9.
  4. Freund L.B., Suresh S. Thin film materials: stress, defect formation and surface evolution. Cambridge: Cambridge University Press, 2004. Available at: https://b-ok.cc/book/438690/7306b4.
  5. Vagramyan A.T., Petrova Yu.S. Fiziko-khimicheskie svoistva elektroliticheskikh osadkov . Moscow: Izd-vo AN SSSR, 1960, 206 p.
  6. Gibson I., Rosen D., Stucker B., et al. Additive Manufacturing Technologies. Berlin: Springer. 2015. doi: 10.1007/978-1-4939-2113-3.
  7. Blount B. Practical electro-chemistry. New York: A. Constable & Company, Limited, 1901. Available at: https://archive.org/details/practicalelectro00blourich.
  8. Mills Edmund J. On Electrostriction. Proceedings of the Royal Society of London, 1877, Vol. 26, pp. 504–512. Available at: https://archive.org/details/paper-doi-10_1098_rspl_1877_0070/mode/2up..
  9. Stoney G.G. The tension of metallic films deposited by electrolysis. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1909, 82(553), pp. 172–175. DOI: http://dx.doi.org/10.1098/rspa.1909.0021.
  10. Brenner A., Senderoff S. Calculation of Stress in Electrodeposits from the Curvature of a Plated Strip. J. Res. Natl. Bur. Stand., 1949, Vol. 42, p. 105. URL: https://archive.org/details/jresv42n2p105.
  11. Soderberg K.G., Graham A.K. Stress in electrodeposits - its significance. Metallurgia, 1947, Vol. 34, p. 74.
  12. Barklie R.H.D., Davies H.I. The effect of surface conditions and electrodeposited metal on the resistance of materials to repeated stresses. Proc. Inst. Mech. Eng., 1930, p. 731. DOI: https://doi.org/10.1243/PIME_PROC_1930_118_024_02.
  13. Lychev S.A., Manzhirov A.V. Matematicheskaya teoriya rastushchikh tel. Konechnye deformatsii . PMM , 2013, vol. 77, no. 4, pp. 421–432. doi: 10.1016/j.jappmathmech.2013.11.011.
  14. Sozio F., Yavari A. Nonlinear mechanics of surface growth for cylindrical and spherical elastic bodies. Journal of the Mechanics and Physics of Solids, 2017, vol. 98, pp. 12—48. doi: 10.1016/j.jmps.2016.08.012.
  15. Zurlo G., Truskinovsky L. Printing Non-Euclidean Solids. Physical Review Letters, 2017. doi: 10.1103/PhysRevLett.119.048001.
  16. Lychev S. Equilibrium equations for transversely accreted shells. ZAMM - Journal of Applied Mathematics and Mechanics: Zeitschrift fur Angewandte Mathematik und Mechanik, 2014, vol. 94 (1-2), pp. 118–129. doi: 10.1002/zamm.201200231.
  17. Lychev S., Koifman K. Nonlinear evolutionary problem for laminated inhomogeneous spherical shell. Acta Mechanica, 2019, vol. 230, pp. 3989–4020. DOI: https://doi.org/10.1007/s00707-019-02399-7.
  18. Arutyunyan N.Kh., Manzhirov A.V., Naumov V.E. Kontaktnye zadachi mekhaniki rastushchikh tel . Moscow: Nauka, 1996, 176 p. Available at: http://bookre.org/reader?file=789569 .
  19. Drozdov A. Viscoelastic Structures: Mechanics of Growth and Aging. San Diego: Academic Press, 1997, 596 p. URL: http://bookre.org/reader?file=789555&pg=1.
  20. Metlov V.V. O narashchivanii neodnorodnykh vyazkouprugikh tel pri konechnykh deformatsiyakh . PMM , 1985, vol. 49, no. 4, pp. 637–647. .
  21. Trincher V.K. Raschet narashchivaemykh tel . Мoscow: Izd-vo MGU, 1989, 154 p. .
  22. Southwell R.V. An introduction to the theory of elasticity for engineers and physicists. Oxford: Oxford University Press, 1941, 509 p. Available at: https://booksc.org/book/47467176/d6d30a .
  23. Feng X., Huang Y., Rosakis A.J. On the Stoney formula for a thin film/substrate system with nonuniform substrate thickness. Journal of Applied Mechanics, November, 2007, vol. 74, no. 6, pp. 1276-1281. Available at: http://www.rosakis.caltech.edu/downloads/pubs/2007/160%20On%20the%20Stoney%20formula%20for%20a%20thin%20film%20substrate.pdf.
  24. Freund L.B., Floro J.A., Chason E. Extensions of the Stoney Formula for Substrate Curvature to Configurations with Thin Substrates or Large Deformations. Applied Physics Letters, 1999, vol. 74, no. 14, pp. 1987–1989. DOI: https://doi.org/10.1063/1.123722.
  25. Janssen G.C., Abdalla M.M., Van Keulen F., Pujada B.R., Van Venrooy B. Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers. Thin Solid Films, 2009, Vol. 517, no. 6, pp. 1858–1867. doi: 10.1016/j.tsf.2008.07.014.
  26. Ciarlet P. Mathematical Elasticity Volume II: Theory of Plates. Amsterdam: Elsevier Science B.V., 1997, lxi+497 p. IBSN 0 444 82570 3. Available at: https://b-ok.cc/book/963731/2d0288.
  27. Klein F. Encyklopadie der mathematischen Wissenschaften. Leipzig: Springer fachmedien wiesbaden, 1914, 874 p. Available at: https://archive.org/details/encyklomath1202encyrich
  28. .
  29. Vorlesungen Uber Technische Mechannik, Dr Aug. Foppl, B.G. Teubner, Bd. 5., Leipzig, Germany, 1907, 132 p.
  30. Festigkeitsproblem im Maschinenbau. T. von Karman, Vieweg+ Teubner Verlag, Wiesbaden, 1910, pp 311–385.
  31. Coman C.D., Bassom A.P. On the Mathematical Structure of Eigen-Deformations in a F¨oppl-von K`arm`an Bifurcation System. Journal of Elasticity, 2018, vol. 131, issue 2, pp. 183–205. doi: 10.1007/s10659-017-9652-3.
  32. Janczewska J. Description of the solution set of the von K´arm´an equations for a circular plate in a small neighbourhood of a simple bifurcation point. Nonlinear Differential Equations and Applications NoDEA, 2006, vol. 13, issue 3, pp. 337–348. doi: 10.1007/s00030-006-4007-y.
  33. Yu Q., Hang X., Shijun L. Coiflets solutions for F¨oppl-von K´arm´an equations governing large deflection of a thin flat plate by a novel wavelet-homotopy approach. Numerical Algorithms, 2018, vol. 79, issue 4, pp. 993–1020. doi: 10.1007/s11075-018-0470-x.
  34. Whittaker E.T., Watson G.N. A Course of Modern Analysis. Cambridge: Cambridge University Press, 1962, 616 p. Available at: https://archive.org/details/ACourseOfModernAnalysis.
  35. Bout D., Bychkov P., Lychev S. Teoreticheskoe i eksperimental’noe issledovanie izgiba tonkoi podlozhki pri elektroliticheskom osazhdenii . PNRPU Mechanics Bulletin, 2020, in print. doi: 10.15593/perm.mech/2020.1.02 .
  36. Lychev S., Bychkov P., Saifutdinov I. Holographic Interferometry of Thin-walled Structure Distortion During the Stereolithography Process. Procedia IUTAM, 2017, vol. 23, pp. 101–107. doi: 10.1016/j.piutam.2017.06.009.
  37. Bychkov P.S. Eksperimental’noe issledovanie progiba rastushchei po tolshchine sfericheskoi obolochki . In: Sovremennye problemy mekhaniki sploshnoi sredy: trudy XIX Mezhdunarodnoi konferentsii , 2018, pp. 53–57 .
  38. Collins M.C., Watterson C.E. Surface-strain measurements on a hemispherical shell using holographic interferometry. Experimental Mechanics, 1975, vol. 15, issue 4, pp. 128–132. DOI: https://doi.org/10.1007/BF02318848.
  39. Vest C.M. Holographic Interferometry. John Wiley, New York, 1979. URL: http://bookre.org/reader?file=730721.
  40. Malacara D., Servin M., Malacara Z. Interferogram Analysis For Optical Testing. CRC Press, 2005, 568 p. Available at: https://b-ok.cc/book/526483/6acefc.
  41. Briers J.D. The interpretation of holographic interferograms. Optical and Quantum Electronics, 1976, vol. 8, issue 6, pp. 469—501. DOI: https://doi.org/10.1007/BF00620139.
  42. Bartels R., Beatty J., Barsky B. An introduction to splines for use in computer graphics and geometric modeling. Burlington: Morgan Kaufmann, 1995, 485 p. URL: https://b-ook.cc/book/437372/4f1b59.

Supplementary files

Supplementary Files

Copyright (c) 2019 Bychkov, P.S., Lychev S.A., Bout D.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies