ABOUT THE SYSTEMS WITH FULL SPARK



Cite item

Full Text

Abstract

Frames of a finite-dimensional Euclidean and unitary spaces composed of discrete Fourier transform matrices are considered. The relationship of phaseless reconstruction systems with the alternative completeness property is presented. In the complex case, alternative completeness is only a necessary condition for phaseless reconstruction. A system of vectors is constructed such that each of its subsystems with a volume equal to the dimension of space is linearly independent. These systems are called systems with full spark. In particular, such systems are optimal for phase retrieval.

About the authors

D. A. Rogach

Samara National Research University, 34, Moskovskoye shosse, 443086, Russian
Federation.

Author for correspondence.
Email: morenov.sv@ssau.ru
ORCID iD: 0000-0001-8857-9325

third year post-graduate student of the Department of Functional Analysis and Function Theory

Russian Federation

References

  1. Novikov S.Ya. Freimy konechnomernykh prostranstv i diskretnaya fazovaya problema . Samara: Samarskii gosuniversitet, 2016, pp. 25–35 .
  2. Bandeira A.S., Cahill J., Mixon D.G., Nelson A.A. Saving phase: Injectivity and stability for phase retrieval. Applied and Computational Harmonic Analysis (ACHA), 2014, Vol. 37, I. 1, pp. 106–125. doi: 10.1016/j.acha.2013.10.002 .
  3. Puschel, M., Kovacevic, J. Real, tight frames with maximal robustness to erasures. In: Data Compression Conference Proceedings, 2005, pp. 63–72. doi: 10.1109/DCC.2005.77. .
  4. Alexeev B., Cahill J., Mixon D.J. Full spark frames. Journal of Fourier Analysis and Application, 2012, no. 6, pp. 1167–1194. doi: 10.1007/s00041-012-9235-4 .
  5. Mixon D.J. Sparse Signal Processing with Frame Theory. PhD. Princeton University, 2012. arXiv:1204.5958vl . .
  6. Novikov S.Ya., Likhobabenko M.A. Freimy konechnomernykh prostranstv . Samara: Izdatel’stvo "Samarskii universitet 2013, pp. 5–24. Available at: http://repo.ssau.ru/bitstream/Uchebnye-posobiya/Freimy-konechnomernyh-prostranstv-Elektronnyi-resursucheb-posobie-dlya-vuzov-68531/1/Новиков%20С.%20А.%20Фреймы%20конечномерных%20пространств.pdf .
  7. Balan R., Casazza P., Edidin D. On signal reconstruction without phase. Applied and Computational Harmonic Analysis, 2006, vol. 20, issue 3, pp. 345–356. doi: 10.1016/j.acha.2005.07.001. .
  8. Goyal V.K., Kovacevic J. Quantized Frame Expansions with Erasures. Applied and Computational Harmonic Analysis, 2001, vol. 10, issue 3, pp. 203–233. DOI: https://doi.org/10.1006/acha.2000.0340.
  9. Horn R.A., Johnson C.R. Matrichnyi analiz: Per. s angl. . Moscow: Mir, 1989, pp. 43–44. Available at: https://b-ok.cc/book/2412248/ba76e6. .
  10. Fickus M., Mixon D.G., Nelson A.A., Wang Ya. Phase retrieval from very few measurements. Linear Аlgebra and Its Аpplications, 2014, vol. 449, pp. 475–499. doi: 10.1016/j.laa.2014.02.011 .

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Rogach D.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies