Cite item

Full Text


Proposed work is the second in the cycle, therefore, we present the classification of malfunctions and introduce the concept of reference malfunctions that can occur in the control system of the object and in the neighborhoods of these malfunctions. The simplest possible approaches to mathematical modeling of malfunctions and their neighborhoods are formulated, and the problem of nondegeneracy of reference malfunctions is discussed in detail. The concept of diagnostic space is introduced, and its mathematical structure is defined. We also prepare the material for the consideration of the problem of differential diagnostics.

About the authors

M. V. Shamolin

Lomonosov Moscow State University

Author for correspondence.
ORCID iD: 0000-0002-9534-0213

Doctor of Physical and Mathematical Sciences, full professor, leading researcher of the Institute of Mechanics, academic of the Russian Academy of Natural Sciences


  1. Shamolin M.V. ( Zadachi differentsial’noi i topologicheskoi diagnostiki. Chast’ 1. Uravneniya dvizheniya i klassifikatsiya neispravnostei) . Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya , 2019, Vol. 25, no. 1, pp. 32–43. doi: 10.18287/2541-7525-2019-25-1-32-43.
  2. Borisenok I.T., Shamolin M.V. Reshenie zadachi differentsial’noi diagnostiki Fundament. i prikl. matem. , 1999, Vol. 5, Issue 3, pp. 775–790. Available at: .
  3. Shamolin M.V. Nekotorye zadachi differentsial’noi i topologicheskoi diagnostiki. Izdanie 2-e, pererab. i dopoln. . M.: Ekzamen, 2007. .
  4. Shamolin M.V. Foundations of Differential and Topological Diagnostics J. Math. Sci., 2003, Vol. 114, no. 1, pp. 976–1024. doi: 10.1023/A:1021807110899 .
  5. Parkhomenko P.P., Sagomonian E.S. Osnovy tekhnicheskoi diagnostiki . M.: Energiya, 1981. Available at: algoritmy-diagnoza_5853e5d7550.html .
  6. Mironovskii L.A. Funktsional’noe diagnostirovanie dinamicheskikh sistem Functional Diagnosing of Dynamical Systems. Avtomatika i Telemekhanika , 1980, no. 8, pp. 96–121. Available at: df .
  7. Okunev Yu.M., Parusnikov N.A. Strukturnye i algoritmicheskie aspekty modelirovaniya dlya zadach upravleniya . M.: Izd-vo MGU, 1983. .
  8. Chikin M.G. Sistemy s fazovymi ogranicheniyami . Avtomatika i telemekhanika , 1987, no. 10, pp. 38–46. Available at: .
  9. Zhukov V.P. O dostatochnykh i neobkhodimykh usloviyakh asimptoticheskoi ustoichivosti nelineinykh dinamicheskikh sistem Avtomatika i telemekhanika , 1994, no. 3, pp. 24–36. Available at: .
  10. Zhukov V.P. O dostatochnykh i neobkhodimykh usloviyakh grubosti nelineinykh dinamicheskikh sistem v smysle sokhraneniya kharaktera ustoichivosti = On the Sufficient and Necessary Conditions for Robustness of the Nonlinear Dynamic Systems in Terms of Stability Retention]. Avtomatika i telemekhanika = Automation and Remote Control, 2008, Volume 69, Issue 1, pp. 27–35. doi: 10.1134/S0005117908010037 .
  11. Zhukov V.P. Reduction of Stability Study of Nonlinear Dynamic Systems by the Second Lyapunov Method. Automation and Remote Control, 2005, Vol. 66, Issue 12, pp. 1916–1928. doi: 10.1007/s10513-005-0224-9 .
  12. Borisenok I.T., Shamolin M.V. Reshenie zadachi differentsial’noi diagnostiki metodom statisticheskikh ispytanii . Vestnik Moskovskogo Universiteta. Ser. 1. Matematika. Mekhanika , 2001, no. 1, pp. 29–31. Available at: .
  13. Beck A., Teboulle M. Mirror Descent and Nonlinear Projected Subgradient Methods for Convex Optimization. Oper. Res. Lett., 2003, Vol. 31, no. 3, pp. 167–175. Available at: .
  14. Ben-Tal A., Margalit T., Nemirovski A. The Ordered Subsets Mirror Descent Optimization Method with Applications to Tomography. SIAM J. Optim., 2001, Vol. 12, no. 1, pp. 79–108. doi: 10.1137/S1052623499354564 .
  15. Su W., Boyd S., Candes E. A Differential Equation for Modeling Nesterov’s Accelerated Gradient Method: Theory and Insights, J. Machine Learning Res., 2016, No. 17(153), pp. 1–43. Available at:’s_ accelerated_gradient_method_Theory_and_insights .
  16. Shamolin M.V. Diagnostika girostabilizirovannoi platformy, vklyuchennoi v sistemu upravleniya dvizheniem letatel’nogo apparata . Elektronnoe modelirovanie , 2011, Vol. 33, no. 3, pp. 121–126. URL: .
  17. Shamolin M.V. Diagnostika dvizheniya letatel’nogo apparata v rezhime planiruyushchego spuska . Elektronnoe modelirovanie , 2010, Vol. 32, no. 5, pp. 31–44. Available at: handle/123456789/61677/04-Shamolin1.pdf?sequence=1 .
  18. Fleming W.H. Optimal Control of Partially Observable Diffusions. SIAM J. Control, 1968, Vol. 6, no. 2, pp. 194–214. doi: 10.1007/BFb0038942 .
  19. Choi D.H., Kim S.H., Sung D.K. Energy-efficient Maneuvering and Communication of a Single UAV-based Relay. IEEE Trans. Aerosp. Electron. Syst., 2014, Vol. 50, no. 3, pp. 2119–2326. doi: 10.1109/TAES.2013.130074 .
  20. Ho D.-T., Grotli E.I., Sujit P.B., Johansen T.A., Sousa J.B. Optimization of Wireless Sensor Network and UAV Data Acquisition, J. Intelligent Robot. Syst., 2015, Volume 78, Issue 1, pp. 159–179. doi: 10.1007/s10846-015-0175-5 .
  21. Ceci C., Gerardi A., Tardelli P. Existence of Optimal Controls for Partially Observed Jump Processes. Acta Appl. Math., 2002, Vol. 74, Issue 2, pp. 155–175. doi: 10.1023/A:1020669212384 .
  22. Rieder U., Winter J. Optimal Control of Markovian Jump Processes with Partial Information and Applications to a Parallel Queueing Model. Math. Meth. Oper. Res., 2009, Vol. 70, pp. 567–596. doi: 10.1007/s00186-009-0284-7 .
  23. Chiang M., Tan C.W., Hande P., Lan T. Power Control in Wireless Cellular Networks. In: Foundation and Trends in Networking, 2008, Vol. 2, Issue 4, pp. 381–533. Available at: chiangm/pc.pdf .
  24. Altman E., Avrachenkov K., Menache I., Miller G., Prabhu B.J., Shwartz A. Power control in wireless cellular networks. IEEE Trans. Autom. Contr., 2009, Vol. 54, Issue 10, pp. 2328–2340 .
  25. Ober R.J. Balanced Parameterization of Classes of Linear Systems. SIAM J. Control Optimization, 1991, Vol. 29, Issue 6, pp. 1251–1287. doi: 10.1137/0329065 .
  26. Ober R.J., McFarlane D. Balanced Canonical Forms for Minimal Systems: A normalized Coprime Factor Approach. Linear Algebra Appl., 1989, Vol. 122-124, pp. 23–64. doi: 10.1016/0024-3795(89)90646-0 .
  27. Antoulas A.C., Sorensen D.C., Zhou Y. On the Decay Rate of Hankel Singular Values and Related Issues. Systems Contr. Lett., 2002, Vol. 46, pp. 323–342. doi: 10.1016/S0167-6911(02)00147-0 .
  28. Wilson D.A. The Hankel Operator and its Induced Norms. Int. J. Contr., 1985, vol. 42, pp. 65–70. doi: 10.1080/00207178508933346 .
  29. Anderson B.D. O., Jury E.I., Mansour M. Schwarz Matrix Properties for Continuous and Discrete Time Systems. Int. J. Contr., 1976, Vol. 3, pp. 1–16. doi: 10.1016/j.protcy.2012.05.144 .
  30. Peeters R., Hanzon B., Olivi M. Canonical Lossless State-Space Systems: Staircase Forms and the Schur Algorithm. Linear Algebra and its Applications, 2007, Vol. 425, no. 2-3, pp. 404–433. doi: 10.1016/j.laa.2006.09.029 .
  31. Tang X., Wang S. A Low Hardware Overhead Self-diagnosis Technique Using Reed-Solomon Codes for Self-repairing Chips. IEEE Trans. Comput., 2010, Vol. 59, no. 10, pp. 1309–1319. doi: 10.1109/DSN.2009.5270327 .

Supplementary files

Supplementary Files

Copyright (c) 2019 Shamolin M.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies