THEORETICAL AND EXPERIMENTAL INVESTIGATION OF CRACK PROPAGATION DIRECTION. PART I
- Authors: Dolgikh V.S.1, Pulkin A.V.1, Mironova E.A.1, Peksheva A.A.1, Stepanova L.V.1
-
Affiliations:
- Samara National Research University
- Issue: Vol 25, No 2 (2019)
- Pages: 30-54
- Section: Articles
- URL: https://journals.ssau.ru/est/article/view/7477
- DOI: https://doi.org/10.18287/2541-7525-2019-25-2-30-54
- ID: 7477
Cite item
Full Text
Abstract
In the present paper the crack propagation direction angles on the basis of three different fracture criteria are found. The maximum tangential stress criterion, the minimum strain energy density criterion and the deformation criterion are used and analysed. The generalized forms of these criteria have been used. It implies that the crack propagation direction angles are obtained with the Williams series expansion in which the higher order terms are kept. The calculations are performed in Waterloo Maple computer algebra software. The analysis of the crack propagation direction angles show that the influence of the higher order terms can’t be ignored. The angles differ considerably when the higher order terms are taken into account.
About the authors
V. S. Dolgikh
Samara National Research University
Author for correspondence.
Email: morenov@ssau.ru
ORCID iD: 0000-0002-1355-4286
postgraduate student of the Department of Mathematical Modelling in Mechanics
A. V. Pulkin
Samara National Research University
Email: morenov@ssau.ru
ORCID iD: 0000-0002-6728-1017
Master’s Degree student of the Department of Mathematical Modelling in Mechanics
E. A. Mironova
Samara National Research University
Email: morenov@ssau.ru
ORCID iD: 0000-0001-7473-2245
postgraduate student of the Department of Mathematical Modelling in Mechanics
A. A. Peksheva
Samara National Research University
Email: morenov@ssau.ru
http://orcid.org/0000-0003-2748-9232
postgraduate student of the Department of Mathematical Modelling in Mechanics
L. V. Stepanova
Samara National Research University
Email: morenov@ssau.ru
ORCID iD: 0000-0002-6693-3132
Doctor of Physical and Mathematical Sciences, professor of the Department of Mathematical Modelling in Mechanics
References
- Aliha M.R.M. On the predicting mode II fracture toughness (KIIc) of hot mix asphalt mixtures using the strain energy density criterion. Theoretical and Applied Fracture Mechanics, 2019, V. 99, pp. 36–43. doi: 10.1016/j.tafmec.2018.11.001 .
- Rabotnov Yu.N. Mekhanika deformiruemogo tverdogo tela . М.: Nauka, 1988. 744 p. Available at: http://bookfi.net/book/449675 .
- Berto F., Ayatollahi M.R. A review of the local strain energy density approach to V-nothces. Physical mesomechanics, 2017, V. 20, № 2, pp. 14–27. Available at: https://cyberleninka.ru/article/v/ a-review-of-the-local-strain-energy-density-approach-applied-to-v-notches .
- Razavi M.J., Aliha M.R.M., Berto F. Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimen. Theoretical and Applied Fracture Mechanics, 2017, № 33, pp. 25–33. doi: 10.1016/j.tafmec.2017.07.004 .
- Mahutov N.A. Deformatsionnye kriterii razrusheniya i raschet elementov konstruktsii na prochnost’ . М.: Mashinostroenie, 1981, 272 p. Available at: http://en.bookfi.net/book/469091 .
- Morozov N.F. Matematicheskie voprosy teorii treshchin . M.: Nauka, 1984. 255 p. Available at: http://en.bookfi.net/book/438624 .
- Morozov N.F., Petrov Yu.V. Problemy dinamiki razrusheniya tverdykh tel . St. Petersburg: SPbGU, 1997, 122 p. URL: https://ru.b-ok.cc/book/646224/38694f .
- Matvienko Yu.G. Modeli i kriterii mekhaniki razrusheniya . М.: Fizmatlit, 2006, 328 p. URL: https://www.studmed.ru/matvienko-yug-modeli-i-kriterii-mehaniki-razrusheniya_9b25979bcbf.html. .
- Kachanov L.M. Osnovy mekhaniki razrusheniya . М.: Nauka, 1974, 312 p. Available at: https://www.studmed.ru/ kachanov-lm-osnovy-mehaniki-razrusheniya_b7befb002cc.html
- .
- Parton V.Z. Mekhanika razrusheniya: Ot teorii k praktike . М.: Nauka, 1990. 240 p. Available at: http://www.zodchii.ws/books/info-1206.html .
- Sibgatullin E.S., Sibgatullin K.E. O tenzore koeffitsientov intensivnosti napryazhenii i kriteriyakh razrusheniya v mekhanike treshchin . Sovremennye naukoemkie tekhnologii , 2014, № 2, pp. 56–60. Available at: https://elibrary.ru/item.asp?id=21111142 .
- Lurie A.I. Teoriya uprugosti . М.: Nauka, 1970, 940 p. URL: https://mexalib.com/view/5347.
- Parton V.Z., Morozov E.M. Mekhanika uprugoplasticheskogo razrusheniya . М.: Nauka, 1985, 504 p. URL: https://ru.b-ok.cc/book/438640/07ed20 .
- Hellan K. Vvedenie v mekhaniku razrusheniya . M.: Mir, 1988, 364 p. Available at: https://ru.b-ok.cc/book/449646/ecd1ef .
- Meliani H.M., Azari Z., Pluvinage G., Matvienko Yu.G. The effective T-stress estimation and crack path emanating from U-notches. Engineering Fracture Mechanics, 2010, Vol. 77, pp. 1682–1692. doi: 10.1016/j.engfracmech.2010.03.010
- .
- Pisarenko G.S., Lebedev A.Ya. Deformirovanie i prochnost’ materialov pri slozhnom napryazhennom sostoyanii . Kiev: Naukova Dumka, 1976, 416 p. Available at: https://ru.b-ok.cc/book/775569/d71d58 .
- Cherepanov G.P. Mekhanika khrupkogo razrusheniya . М.: Nauka, 2012, 640 p. Available at: https://ru.b-ok.cc/ book/438682/d295ae .
- Hertzberg R.V. Deformatsiya i mekhanika razrusheniya konstruktsionnykh materialov . М.: Metallurgiya, 1989, 576 p. Available at: https://ru.b-ok.cc/book/3674015/7fc2af .
- Stepanova L.V. Asimptoticheskii analiz polya napryazhenii u vershiny treshchiny (uchet vysshikh priblizhenii) . , 2019, № 3, pp. 345–361. doi: 10.15372/SJNM20190307 .
- Stepanova L.V., Roslyakov P.S. Complete Williams Asymptotic Expansion near the Crack Tips of Collinear Cracks of Equal Lengths in an Infinite Plane. Solid State Phenomena, 2017, V. 258, pp. 209–212. doi: 10.1016/j.prostr.2016.06.225.
- Stepanova L.V., Roslyakov P.S. Polnoe asimptoticheskoe razlozhenie M. Uil’yamsa u vershin dvukh kollinearnykh treshchin konechnoi dliny v beskonechnoi plastine . Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mekhanika , 2015, no. 4, pp. 188–225. doi: 10.15593/perm.mech/2015.4.12 .
- Stepanova L., Roslyakov P. Complete Williams asymptotic expansion of the stress field near the crack tip: Analytical solutions, interference–optic methods and numerical experiments. In: AIP Conference Proceedings, 2016, V. 1785, 030029. doi: 10.1063/1.4967050 .
- Sih G.C. Application of Strain – Energy – Density Theory to Fundamental Fracture Problem. In: Institute of Fracture and Solid Mechanical Technical Report. Lehigh University, AFOSR-RT-73-1, 1973, pp. 19–21 .
- Mirsayar M.M. Mixed mode fracture analysis using extended maximum tangential strain criterion. Materials and Design, 2015, V. 86, pp. 941–947. doi: 10.1016/j.matdes.2015.07.135 .
- Ayatollahi M.R., Rashidi Moghaddam, Berto F. A generalized strain energy density criterion for mixed mode fracture analysis in brittle and quasi-brittle materials. Theoretical and Applied Fracture Mechanics, 2015, V. 79, pp. 70–76. doi: 10.1016/j.tafmec.2015.09.004 .
- Legan M.A., Legan N.A. Dinamika sploshnoi sredy. Deformirovanie i razrushenie strukturno-neodnorodnykh sred i konstruktsii . Novosibirsk: IGiL, 1990, pp. 49–60 .
- Hello G., Tahar M.B. Roelandt J.-M. Analytical determination of coefficients in crack-tip stress expansions for a finite crack in an infinite plane medium. International Journal of Solids and Structures, 2012, V. 49, pp. 556–566. doi: 10.1016/j.ijsolstr.2011.10.024.
- Stepanova L.V. Eigenvalue of the antiplane shear crack problem for a power-law material. Journal of Applied Mechanics and Technical Physics, 2008, V. 49, № 1, pp. 142–147. doi: 10.1007/s10808-008-0021-7.
- Stepanova L.V., Fedina M.Ye. Self-similar solution of a tensile crack problem in a coupled formulation. Journal of Applied Mathematics and Mechanics, 2008, V. 72, № 3, pp. 360–368. doi: 10.1016/j.jappmathmech.2008.07.015.
- Sih G.C. Strain energy density factor applied to mixed mode crack problems. International Journal of Fracture, 1974, V. 10, № 3, pp. 305–321. DOI: https://doi.org/10.1007/BF00035493 .
- Wong A.K. On the application of the strain energy density theory in predicting crack initiation and angle of growth. Engng Fract. Mech., 1997, V. 27, № 2, pp. 157–170 .
- Ovcharenko Yu.N. Plotnost’ energii deformatsii v lineinoi mekhanike razrusheniya primenitel’no k V – obraznym vyrezam . Aktual’nye voprosy mekhaniki , 2006, № 2, pp. 141–149 .
- Lavit I.M. Ob asimptotike polei napryazhenii i deformatsii v okrestnosti konchika treshchiny . Mekhanika tverdogo tela , 2009, № 3, pp. 54–57. Available at: https://elibrary.ru/item.asp?id=12328106 .
- Shlyannikov V.N. Vychislitel’naya mekhanika deformirovaniya i razrusheniya . Kazan: KGEU, 2001, 257 p. .
- Shlyannikov V.N., Shkanov I.N. K raschetu koeffitsientov intensivnosti napryazhenii dlya plastiny s proizvol’no orientirovannoi treshchinoi pri dvukhosnom nagruzhenii . In: Dinamika i prochnost’ mekhanicheskikh sistem . Perm: PPI, 1981, pp. 181–185 .
- Shlyannikov V.N. Plotnost’ energii deformatsii i zona protsessa razrusheniya. Teoreticheskie predposylki . Problemy prochnosti , 1995, pp. 3–17 .
- Shlyannikov V.N. Smeshannye mody razvitiya treshchin pri slozhnom napryazhennom sostoyanii . М.: Zavodskaya laboratoriya, 1990, pp. 77–90 .
- Shlyannikov V.N., Tumanov A.V. Uprugie parametry smeshannykh form deformirovaniya poluellipticheskoi treshchiny pri dvukhosnom nagruzhenii . Kazan: Federal’nyi issledovatel’skii tsentr ”Kazanskii nauchnyi tsentr RAN”, 2009, 34 p. .
- Stepanova L.V. Vliyanie vysshikh priblizhenii v asimptoticheskom razlozhenii M. Uil’yamsa polya napryazhenii na opisanie napryazhenno-deformirovannogo sostoyaniya u vershiny treshchiny. Chast’ I . Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya , 2019, V. 25, no. 1, pp. 63–79. doi: 10.18287/2541-7525-2019-25-1-63-79 .
- Stepanova L.V. Vliyanie vysshikh priblizhenii v asimptoticheskom razlozhenii M. Uil’yamsa polya napryazhenii na opisanie napryazhenno-deformirovannogo sostoyaniya u vershiny treshchiny. Chast’ II . Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya , 2019, V. 25, no. 1, pp. 80–96. doi: 10.18287/2541-7525-2019-25-1-80-96 .