Cite item


In the article we present a construction of a representing system based on the discretized Szego kernel in the Hardy space defined on the two-dimensional polydisc. An answer to the question on the existence of representing systems based on reproducing kernels depends significantly on the space under consideration. It is well known that in the Hardy space there are no both bases and Duffin — Shaeffer frames, based on the discretized Szego kernel. We use a notion of a Banach frame which generalizes the concept of the Duffin — Shaeffer frame. Having constructed a Banach frame, we can say that any function from the Hardy space can be represented as a series of discretized kernels.

About the authors

K. S. Speransky

Saratov State University

Author for correspondence.
Email: morenov@ssau.ru
ORCID iD: 0000-0002-3170-2828

Master’s Degree Student of the Department of Function Theory and Stochastic Analysis


  1. Halmos P.R. Gil’bertovo prostranstvo v zadachakh . M.: Mir, 1970, 351 p. Available at: http://bookre.org/reader?file=443586 .
  2. Duren P.L. Theory of Hp spaces. New York: Academic Press, 1970, 258 p. Available at: http://bookre.org/reader?file=1465899 .
  3. Duren P.L., Schuster A.P. Bergman spaces. Providence: AMS, 2004, 318 p. Available at: http://bookre.org/reader?file=2233148.
  4. Fricain E., Khoi L., Lef`evre P. Representing systems generated by reproducing kernels. Indag. Math., 2018, Vol. 29(3), pp. 860–872 .
  5. Speransky K.S., Terekhin P.A. A representing system generated by the Szeg¨o kernel for the Hardy space. Indag. Math., 2018, Vol. 29(5), pp. 1318–1325. doi: 10.1016/j.indag.2018.06.001 .
  6. Agler J., McCarthy J.E. Pick interpolation and Hilbert function spaces. Providence: AMS, 2002, 308 p. Available at: https://ru.b-ok.cc/book/2291887/42a853.
  7. Duffin R., Schaeffer A. A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 1952, V. 72(2), pp. 341–366. Available at: https://www.ams.org/journals/tran/1952-072-02/S0002-9947-1952-0047179-6/S0002-9947-1952- 0047179-6.pdf .
  8. Terekhin P.A. Freimy v banakhovom prostranstve i ikh prilozheniya k postroeniyu vspleskov . In: Issledovaniya po algebre, teorii chisel, funktsional’nomu analizu i smezhnym voprosam. Sb. nauch. trudov, vyp. 2 . Saratov: Izd-vo Sarat. un-ta, 2003, pp. 65–81. Available at: https://elibrary.ru/item.asp?id=23891428 (in Russian)
  9. Terekhin P.A. Banakhovy freimy v zadache affinnogo sinteza . Matem. sb. , 2009, 200:9, 1383–1402. doi: 10.4213/sm5655 .
  10. Rudin W. Functional Analysis. 2nd edition. New York: McGraw-Hill, 1991, 448 p. Avaialble at: https://59clc.files.wordpress.com/2012/08/functional-analysis-rudin-2th.pdf.

Copyright (c) 2019 К. С. Сперанский

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies