ON SOME CLASS OF INTERPOLATION FUNCTORS
- Authors: Astashkin S.V.1
-
Affiliations:
- Samara National Research University
- Issue: Vol 25, No 2 (2019)
- Pages: 7-20
- Section: Articles
- URL: https://journals.ssau.ru/est/article/view/7475
- DOI: https://doi.org/10.18287/2541-7525-2019-25-2-7-20
- ID: 7475
Cite item
Full Text
Abstract
As it is well known, the Gustavsson — Peetre construction, using the concept of unconditional convergence in Banach spaces, provides an important class of interpolation functors. In this paper, we define a new close construction, based on the use of the so-called random unconditional convergence. We find necessary and sufficient conditions, which being imposed on a generating function give us an interpolation functor defined on the category of Banach couples. It is shown that calculating the latter functor for a couple of Orlicz spaces results in the ”natural” interpolation theorem. Moreover, we obtain conditions that guarantee the coincidence of this functor with the corresponding Gustavsson — Peetre functor, as well as with the Calder´on — Lozanovskii method.
About the authors
S. V. Astashkin
Samara National Research University
Author for correspondence.
Email: morenov@ssau.ru
ORCID iD: 0000-0002-8239-5661
Doctor of Physical and Mathematical Sciences, professor, Head of the Department of Functional Analysis and Function Theory
Russian FederationReferences
- Gustavsson J., Peetre J. Interpolation of Orlicz spaces // ( Studia Math.). 60(1977), 33–59. doi: 10.4064/sm-60-1-33-59 .
- Albiac F., Kalton N.J. Topics in Banach Space Theory. Graduate Texts in Mathematics, vol. 233. Springer-Verlag, New York, 2006, 373 p. Available at: http://bookfi.net/book/443122 .
- Kantorovich L.V., Akilov G.P. Funktsional’nyi analiz . M.: Nauka, 1977, 742 p. Available at: http://bookre.org/reader?file=443508 .
- Krein S.G., Petunin Yu.I., Semenov E.M. Interpolyatsiya lineinykh operatorov . M.: Mauka, 1978, 400 p. Available at: http://bookre.org/reader?file=443528 .
- Lindenstrauss J., Tzafriri L. Classical Banach Spaces II. Function Spaces. Springer-Verlag, Berlin, Heidelberg, New York, 1979, 243 p. Available at: http://bookre.org/reader?file=773581
- .
- Krasnoselskii M.A., Rutickii Ya.B. Vypuklye funktsii i prostranstva Orlicha . M.: Gos. izd. fiz.-mat. lit., 1958, 271 p. Available at: http://bookre.org/reader?file=483833
- .
- Maligranda L. Orlicz Spaces and Interpolation. Seminars in Mathematics 5. University of Campinas, Campinas, 1989, 206 p. .
- Bergh J. and L¨ofstr¨om J. Interpolyatsionnye prostranstva. Vvedenie . M.: Mir, 1980, 264 p. Available at: http://en.bookfi.net/book/443448 .
- Brudny˘ı Yu.A., Krugljak N.Ya. Interpolation Functors and Interpolation Spaces. North-Holland, Amsterdam, 1991, 735 p. Available at: http://bookre.org/reader?file=581684 .
- Bennett C., Sharpley R. Interpolation of operators. Academic Press, Inc., Boston, 1988, 483 p. Available at: http://bookre.org/reader?file=459025 .
- Ovchinnikov V.I. The Method of Orbits in Interpolation Theory. Math. Reports, 1984, Vol. 1, № 2, pp. 349–516. Available at: http://bookre.org/reader?file=580304 .
- Astashkin S.V. Sistema Rademakhera v funktsional’nykh prostranstvakh . M.: Fizmatlit, 2017, 549 p. Available at: https://elibrary.ru/item.asp?id=32753797 .
- Szarek S.J. On the best constant in the Khintchine inequality. Studia Math., 58 (1976), 197–208. Avaialble at: https://zbmath.org/0424.42014 .
- Triebel H. Teoriya interpolyatsii, funktsional’nye prostranstva, differentsial’nye operatory . M.: Mir, 1980, 664 p. Available at: http://bookre.org/reader?file=443582 .