THE PREDICTOR-CORRECTOR METHOD FOR MODELLING OF NONLINEAR OSCILLATORS
- Authors: Zaitsev V.V.1, Fedyunin E.Y.2
-
Affiliations:
- Samara National Research University
- Joint Stock Company Space Rocket Centre Progress
- Issue: Vol 25, No 1 (2019)
- Pages: 97-103
- Section: Articles
- URL: https://journals.ssau.ru/est/article/view/7010
- DOI: https://doi.org/10.18287/2541-7525-2019-25-1-97-103
- ID: 7010
Cite item
Full Text
Abstract
In the work physically reasonable algorithm of numerical modeling of nonlinear oscillatory and self-oscillatory systems are offered. The algorithm is based on discrete in time model of the linear oscillator. Nonlinearity is considered by the introduction to the oscillator of additional communications by the structural analysis of an initial system. For approximation of a temporary derivative in nonlinear communications it is offered to use the scheme of the prediction and correction. In spite of the fact that theoretically the algorithm has the second order of accuracy, within the numerical experiment with Van der Pol oscillator it shows better results, than a standard method of the second order — the Heun’s method.
About the authors
V. V. Zaitsev
Samara National Research University
Author for correspondence.
Email: morenov@ssau.ru
ORCID iD: 0000-0003-2544-8197
Candidate of Physical and Mathematical Sciences, professor of the Department of Optics and Spectroscopy
E. Yu. Fedyunin
Joint Stock Company Space Rocket Centre Progress
Email: morenov@ssau.ru
ORCID iD: 0000-0002-7968-3064
engineer
Russian FederationReferences
- Bogolyubov N.N., Mitropolskiy Yu.A. Asimptoticheskie metody v teorii nelineinykh kolebanii. Izd. 4-e . M.: Nauka, 1974, 504 p. Available at: http://bookre.org/reader?file=542799 .
- Landa P.S. Nelineinye kolebaniya i volny. Izd. 3-e. . M.: Librokom, 2015, 552 p. Available at: https://ru.b-ok.org/book/3371333/2e184f .
- Samarskii A.A., Mikhaylov A.P. Matematicheskoe modelirovanie . M.: FIZMATLIT, 2002, 302 p. Available at: http://samarskii.ru/books/book2001.pdf .
- Parker T.S., Chua L.O. Practical numerical algorithms for chaotic systems. NY: Springer-Verlag, 1989. 348 p. Available at: http://bookre.org/reader?file=464214 .
- Hairer E., Norsett S., Wanner G. Reshenie obyknovennykh differentsial’nykh uravnenii. Nezhestkie zadachi . M.: Mir, 1990, 512 p. Available at: http://bookre.org/reader?file=470582&pg=1 .
- Zaitsev V.V., Shilin A.N. Otobrazheniya generatora Van der Polya-Dyuffinga v diskretnom vremeni . Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya , 2017, no. 2, pp. 51–59. Available at: http : // www. mathnet. ru / php / archive. phtml?wshow=paper&jrnid=vsgu&paperid=542&option_lang=rus .
- Zaitsev V.V., Karlov A.V., Karlov Ar.V. O chislennom modelirovanii tomsonovskikh avtokolebatel’nykh sistem . Vestnik Samarskogo gosudarstvennogo universiteta. Estestvennonauchnaya seriya , 2015, Vol. 21, no. 6, pp. 141–150 .
- Kuznetsov A.P., Savin A.V., Sedova Yu.V. Bifurkatsiya Bogdanova-Takensa: ot nepreryvnoi k diskretnoi modeli . Izvestiya vuzov. Prikladnaya nelineinaya dinamika , 2009, Vol. 17, no. 6, pp. 39–158. Available at: https://cyberleninka.ru/article/n/bifurkatsiya-bogdanova-takensa-ot-nepreryvnoy-k-diskretnoy-modeli .
- Anishhenko V.S., Astakhov V.V., Vadivasova T.E., Neiman A.B., Strelkova G.I., Schimanskii-Gaier L. Nelineinye effekty v khaoticheskikh i stokhasticheskikh sistemakh . Moscow-Izhevsk: Institut komp’yuternykh issledovanii, 2003, 544 p. Available at: https : // www. studmed.ru/ anischenko-vs-nelineynye-effekty-v-haoticheskih-i-stohasticheskih-sistemah_f9fbbb34a1c. html .
- Nefedov V.I., Reshetnyak S.A., Tretyakov G. N., Zasovin E.A. Fil’tratsiya signalov na fone shuma vblizi attraktora . Radiotekhnika i elektronika , 2019, Vol. 64, no. 2, pp. 175-180. doi: 10.1134/S0033849419020165 .
- Balakin M.I., Ryskin N.M. Mul’tistabil’nost’ i slozhnye kolebatel’nye rezhimy v generatore s zapazdyvayushchim otrazheniem ot nagruzki . Pis’ma v ZhTF , 2019, Vol. 45, issue 6, pp. 33–35. doi: 10.21883/PJTF.2019.06.47497.17551 .
- Zaitsev V.V., Stulov I.V. O vliyanii podmenennykh garmonik na dinamiku kolebanii v diskretnom vremeni . Izvestiya vuzov. Prikladnaya nelineinaya dinamika , 2015, Vol. 23, no 6, pp. 40–46. doi: 10.18500/0869-6632-2015-23-6-40-46 .