Cite item

Full Text


The description of mechanical fields at the vicinity of a bi-dimensional crack-tip can be performed using the classic Williams asymptotic series expansion. While the general structure is well known, complete expressions are rarely available for specific crack problems. The paper is devoted to the multi-parameter description of the stress field in the vicinity of two collinear crack of different length in an infinite isotropic elastic medium subjected to 1) Mode I loading; 2) Mode II loading; 3) mixed (Mode I + Mode II) mode loading. The multi-parameter asymptotic expansions of the stress field are obtained. The procedure used in the paper relates Williams series coefficients and the complex potentials of the plane elasticity. The amplitude coefficients of the multi-parameter series expansion are found in the closed form. Having obtained the coefficients of the Williams series expansion one can keep any preassigned number of terms in the asymptotic series. Asymptotic analysis of number of the terms in the Williams asymptotic series which is necessary to keep in the asymptotic series at different distances from the crack tip. It is shown that the more distance from the crack tip the more terms in the Williams asymptotic expansion need to be kept. Complete closed-form expressions can be used to derive, test and improve numerical and experimental approaches involving higher order terms in crack-tip expansions.


About the authors

L. V. Stepanova

Samara National Research University

Author for correspondence.
ORCID iD: 0000-0002-6693-3132

Doctor of Physical and Mathematical Sciences, professor of the Department of Mathematical Modelling in Mechanics


  1. Pachalina N.S., Morozov E.M., Matvienko Y.G. Raschet traektorii treshchiny pri rastyazhenii klina variatsionnym metodom . In: XXVI Mezhdunarodnaya innovatsionno-orientirovannaya konferentsiya molodykh uchenykh i studentov MIKMUS-2014. Trudy konferentsii , M., 2015, pp. 544–548. Available at: .
  2. Matvienko Y.G., Morozov E.M. Two basic approaches in a search of the crack propagation angle. Fatigue and Fracture of Engineering Materials and Structures, 2017, Vol. 40, Issue 8, pp. 1191–1200. doi: 10.1111/ffe.12583 .
  3. Krepl O., Klusak J. Multi-parameter failure assessment of a bi-material V-notch - Crack initiation from a free-edge singularity. Theoretical and Applied Fracture Mechanics, April 2019, Vol. 100, pp. 233–241. doi: 10.1016/j.tafmec.2019.01.021 .
  4. Malikova L. Multi-parameter fracture criteria for the estimation of crack propagation direction applied to a mixed-mode geometry. Engineering Fracture Mechanics, Volume 143, July 2015, pp. 32–46. doi: 10.1016/j.engfracmech.2015.06.029 .
  5. Malikova L., Vesely V., Seitl S. Crack propagation direction in a mixed mode geometry estimated via multi-parameter fracture criteria. International Journal of Fatigue, August 2016, Vol. 89, pp. 99–107. doi: 10.1016/j.ijfatigue.2016.01.010 .
  6. Stepanova L.V., Igonin S.A. Asymptotics of the near-crack-tip stress field of a growing fatigue crack in damaged materials: Numerical experiment and analytical solution. Numerical Analysis and Applications, April 2015, Volume 8, Issue 2, pp. 168–181. doi: 10.1134/S1995423915020081 .
  7. Berto F., Lazzarin P. Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches. Materials Science and Engineering: R: Reports, Vol. 75, January 2014, pp. 1–48. doi: 10.1016/j.mser.2013.11.001 .
  8. Malikova L., Vesely V. Estimation of the crack propagation direction in a mixed-mode geometry via multi-parameter fracture criteria. Frattura ed Integrita Strutturale, 2015, Vol. 33, pp. 25–32. doi: 10.3221/IGF-ESIS.33.04 .
  9. Malikova L., Vesely V. Influence of the elastic mismatch on crack propagation in a silicate-based composite. Theoretical and Applied Fracture Mechanics, 2017 .
  10. Vesely V., Sobek J., Seitl S. Multi-parameter approximation of the stress field in a cracked body in the more distant surrounding of the crack tip. International Journal of Fatigue, February 2016, Vol. 89, pp. 20–35. doi: 10.1016/j.ijfatigue.2016.02.016 .
  11. Kuliev V.D., Morozov E.M. Gradientnyi deformatsionnyi kriterii khrupkogo razrusheniya . Doklady Akademii Nauk , 2016, Vol. 61, № 10, pp. 502–504. Available at: .
  12. Кuliev V.D., Morozov E.M. Gradientnyi deformatsionnyi kriterii khrupkogo razrusheniya. Analiticheskoe obosnovanie i eksperimetal’noe obosnovanie . Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I.Ya. Yakovleva. Seriya: Mekhanika predel’nogo sostoyaniya , 2016, № 2(28), pp. 87–102. Available at: .
  13. Muskhelishvili N.I. Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti . М.: Nauka, 1966, 708 р. Available at:
  14. Williams M.L. On the stress distribution at the base of a stationary crack. Trans. ASME. Journal of Applied Mechanics, 1957, Vol. 24, pp. 109–114. Available at: bf85/be73df7eb5449a8c856c5ec2fcc2487b04dd.pdf
  15. Hello G., Tahar M.B., Roelandt J.-M. Analytical determination of coefficients in crack-tip stress expansions for a finite crack in an infinite plane medium. International Journal of Solids and Structures, Vol. 49, Issues 3–4, February 2012, pp. 556-566. doi: 10.1016/j.ijsolstr.2011.10.024 .
  16. Stepanova L.V., Igonin S.A. Rabotnov damageparameter and description of delayed fracture: Results, current status, application to fracture mechanics, and prospects. Journal of Applied Mechanics and Technical Physics, March 2015, Volume 56, Issue 2, pp. 282–292. doi: 10.1134/S0021894415020145 .
  17. Stepanova L.V. Asymptotics of stresses and strain rates near the tip of a transverse shear crack in a material whose behavior is described by a fractional-linear law. Journal of Applied Mechanics and Technical Physics, January 2009, Vol. 50, Issue 1, pp. 137–146. doi: 10.1007/s10808-009-0019-9 .
  18. Stepanova L.V., Roslyakov P.S. Multi-parameter description of the crack-tip stress field: Analytic determination of coefficients of crack-tip stress expansions in the vicinity of the crack tips of two finite cracks in an infinite plane medium. International Journal of Solids and Structures, September 2016, № 100-101, pp. 11–28. doi: 10.1016/j.ijsolstr.2016.06.032 .
  19. Stepanova L.V., Adylina E.M. Stress-strain state in the vicinity of a crack tip under mixed loading. Journal of Applied Mechanics and Technical Physics, September 2014, Volume 55, Issue 5, pp. 885–895. doi: 10.1134/S0021894414050186 .
  20. Stepanova L.V., Yakovleva E.M. Asymptotic stress field in the vicinity of a mixed-mode crack under plane stress conditions for a power-law hardening material. Journal of Mechanics of Materials and Structures, August 2015, Vol. 10, № 3, pp. 367–393. doi: 10.2140/jomms.2015.10.367 .
  21. Sobek J., Frantik P., Vesely V. Analysis of accuracy of Williams series approximation of stress field in cracked body _ influence of area of interest around crack-tip on multi-parameter regression performance. Frattura ed Integrita Strutturale, 2017, Vol. 11, No. 39 (2017): January 2017, pp. 129–142. doi: 10.3221/IGF-ESIS.39.14 .
  22. Surendra K.V.N., Simha K.R.Y. Design and analysis of novel compression fracture specimen with constant form factor: Edge cracked semicircular disk (ECSD). Engineering Fracture Mechanics, April 2013, Vol. 102, pp. 235–248. doi: 10.1016/j.engfracmech.2013.02.014 .
  23. Akbardoost J., Rastin A. Comprehensive data for calculating the higher order terms of crack tip stress field in disk-type specimens under mixed mode loading. Theoretical and Applied Fracture Mechanics, January 2015, Vol. 76, pp. 75–90. doi: 10.1016/j.tafmec.2015.01.004 .
  24. Issledovanie protsessa rasprostraneniya treshchiny po dannym izmerenii lokal’nogo deformatsionnogo otklika. I. Pole deistvuyushchikh napryazhenii. S.I. Eleonskii . . Investigation of the crack propagation process according to measurements of the local deformation response. I. Field of the acting stresses]. Uchenye zapiski TsAGI , 2015, Vol. 46, № 7, pp. 55–80. Available at: .
  25. Evaluation of crack-tip fields from DIC data: A parameter study. M. Mokhtarishirazabad . International Journal of Fatigue, Volume 89, August 2016, pp. 11–19. doi: 10.1016/j.ijfatigue.2016.03.006 .
  26. Lychak O., Holyns’kiy I. Improving the accuracy of derivation of the Williams’ series parameters under mixed (I+II) mode loading by compensation of measurement bias in the stress field components data. Measurement Science and Technology, December 2016, Vol. 27, Issue 12, p. 125203. doi: 10.1088/0957-0233/27/12/125203 .
  27. Ayatollahi M.R., Moazzami M. Digital image correlation method for calculating coefficients of Williams expansion in compact tension. Optic and Lasers in Engineering, March 2017, Vol. 90, pp. 26–33. doi: 10.1016/j.optlaseng.2016.09.011 .
  28. Chernyatin A.S., Matvienko Yu.G., Lopez-Crespo P. Mathematical and numerical correction of the DIC displacements for determination of stress field along crack front. Procedia Structural Integrity, 2016, Vol. 2, pp. 2650–2658. doi: 10.1016/j.prostr.2016.06.331 .
  29. Prataprao Patil, Vyasarayani C.P., Ramji M. Linear least square approach for evaluating crack tip fracture parameters using isochromatic and isoclinic data from digital photoelasticity. Optics and Lasers in Engineering, February 2017, Volume 93, pp. 182–194. doi: 10.1016/j.optlaseng.2017.02.003 .
  30. Aliha M.R.M. On predicting mode II fracture toughness (KIIc) of hot mix ashalt mixtures using the strain energy criterion. Theoretical and Applied Fracture Mechanics, 2019, Vol. 99, pp. 36–43 .
  31. Mirzaei A.M., Ayatollahi M.R., Bahrami B. Asymptotic stress field and the coefficients of singular and higher order terms for V-notches with end holes under mixed-mode loading. International Journal of Solids and Structures, 2019, Vol. 172–173, pp. 51–69. doi: 10.1016/j.ijsolstr.2019.05.011 .
  32. Hello G. Derivation of complete crack-tip stress expansions from Westergaard-Sanford solutions. International Journal of Solids and Structures, May 2018, Vols. 144–145, pp. 265–275. doi: 10.1016/j.ijsolstr.2018.05.012 .
  33. On the stress singularity at crack tip in elasticity. F. Zhu . Results in Physics, 2019, Vol. 13, p. 102210 .
  34. Krepl O., Klusak J. Multi-parameter average strain energy density factor criterion applied on the sharp material inclusion problem. Procedia Structural Integrity, 2018, Vol. 13, pp. 1279–1284. doi: 10.1016/j.prostr.2018.12.261 .
  35. Torabi A.R., Bahrabi B., Ayatollahi M.R. Experimental determination of the notch stress intensity factor for sharp V-notched specimens by using the digital image correlation methhod. Theoretical and Applied Fracture Mechanics, 2019, Vol. 103, Art. 102244 .

Supplementary files

Supplementary Files

Copyright (c) 2019 Stepanova L.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies