ABOUT ONE TASK WITH A NONLOCAL CONDITION ON TIME VARIABLE FOR THE HYPERBOLIC EQUATION
- Authors: Kirichenko S.V.1
-
Affiliations:
- Samara State University of Railway Transport
- Issue: Vol 24, No 4 (2018)
- Pages: 24-28
- Section: Articles
- URL: https://journals.ssau.ru/est/article/view/6500
- DOI: https://doi.org/10.18287/2541-7525-2018-24-4-24-28
- ID: 6500
Cite item
Full Text
Abstract
In this article, boundary value problem for hyperbolic equation with nonlocal initial data in integral form is considered. The main result is that the nonlocal problem is equivalent to the classical boundary value problem for a loaded equation. This fact helps to prove the uniqueness of a solution to the problem.
About the authors
S. V. Kirichenko
Samara State University of Railway Transport
Author for correspondence.
Email: morenov@ssau.ru
References
- Cannon J.R. The solution of the heat equation subject to the specification of energy. Quart. Appl. Math., 1963, no. 21, pp. 155–160 .
- Gushchin A.K., Mihailov V.P. O razreshimosti nelokalnykh zadach dlya ellipticheskogo uravneniya vtorogo poryadka . Matem. sb. , 1995, 81:1, pp. 101–136. DOI: http://dx.doi.org/10.1070/SM1995v081n01ABEH003617 .
- Skubachevsky A.L. Neklassicheskie kraevye zadachi. I . Sovremennaya matematika. Fundamentalnye napravleniya , 2008, 155:2, pp. 199–334. DOI: https://doi.org/10.1007/s10958-008-9218-9 .
- Gordeziani D.G., Avalishvili G.A. Resheniya nelokal’nykh zadach dlya odnomernykh kolebanii sredy . Matem. modelir. , 2000, Vol. 12, no. 1, pp. 94–103. Available at: http://mi.mathnet.ru/mm832 .
- Kozhanov A.I., Pulkina L.S. O razreshimosti kraevykh zadach s nelokal’nym granichnym usloviem integral’nogo vida dlya mnogomernykh giperbolicheskikh uravnenii . Differents. Uravneniia , 2006, Vol. 42, no. 9, pp. 1233–1246. DOI: https://doi.org/10.1134/S0012266106090023 .
- Pulkina L.S. Kraevye zadachi dlya giperbolicheskogo uravneniya s nelokalnymi usloviyami 1 i 2-go roda . Izvestiya vuzov. Matematika , 2012, Vol. 56, no. 4, pp. 74–83. Available at: https://kpfu.ru/portal/docs/F19962257/08_04ref.pdf .
- Samarskii А.А. O nekotorykh problemakh sovremennoi teorii differentsial’nykh uravnenii . Differents. uravneniia , 1980, Vol. 16, no. 11, pp. 1925–1935. Available at: http://mi.mathnet.ru/de4116 .
- Zdenek P. Bazant, Milan Jirasek. Nonlocal Integral Formulation of Plasticity And Damage: Survey of Progress. American Society of Civil Engineers. Journal of Engineering Mechanics, 2002, pp. 1119–1149. DOI: https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119) .
- Ladyzhenskaya O.А. Kraevye zadachi matematicheskoi fiziki . М.: Nauka, 1973, 407 p. Available at: https://mexalib.com/view/25085 .