MACKAY FUNCTIONS IN SPACES OF HIGHER LEVELS
- Authors: Voskresenskaya G.V.1
-
Affiliations:
- Samara National Research University
- Issue: Vol 24, No 4 (2018)
- Pages: 13-18
- Section: Articles
- URL: https://journals.ssau.ru/est/article/view/6498
- DOI: https://doi.org/10.18287/2541-7525-2018-24-4-13-18
- ID: 6498
Cite item
Full Text
Abstract
In the article we prove structure theorems for spaces of cusps forms with the levels that are divisible by the minimal levels for MakKay functions. There are 28 eta–products with multiplicative Fourier coeffi- cients. They are called MacKay functions. Let f(z) be such function. It belongs to the space Sl(Γ0(N), χ) for a minimal level N. In each space of the level N there is the exact cutting by the function f(z). Also the function f(z) is a cusp form for multiple levels. In this case the exact cutting doesn’t take place and the additional spaces exist. In this article we find the conditions for the divisor of functions that are divisible by f(z) and we study the structure of additional spaces. Dimensions of the spaces are calculated by the Cohen — Oesterle formula, the orders in cusps are calculated by the Biagioli formula.
About the authors
G. V. Voskresenskaya
Samara National ResearchUniversity
Author for correspondence.
Email: morenov@ssau.ru
References
- Ono K. The web of modularity: arithmetic of the coefficients of modular forms and q-series. A.M.S., Providence, 2004, 216 p. .
- Koblitz N. Vvedenie v ellipticheskie krivye i modulyarnye formy . M.: Mir, 1988, 320 p. .
- Knapp A. Ellipticheskie krivye . M.: Faktorial Press, 2004, 488 p. .
- Voskresenskaya G.V. Tochnoe rassechenie v prostranstvakh parabolicheskikh form s kharakterami . Matem. zametki , 2018, Vol. 103, no 6, pp. 881–891. DOI: https://doi.org/10.1134/S0001434618050243 .
- Voskresenskaya G.V. Eta-funktsiya Dedekinda v sovremennykh issledovaniyakh . Itogi nauki i tekhniki. Ser.: Sovrem. mat. i ee pril. Temat. obz. .
- Gordon B., Sinor D. Multiplicative properties of η−products. L.N.M., 1987, Vol. 1395, pp. 173–200 .
- Voskresenskaya G.V. One special class of modular forms and group representations. Journal de Theorie des Nombres de Bordeaux, 1999, Vol. 11, pp. 247–262. Available at: http://www.numdam.org/article/JTNB_1999_11_1_247_0.pdf .
- Dummit D., Кisilevsky H., МасKay J. Multiplicative products of η-functions. Contemp.Math., 1985, Vol. 45, pp. 89–98 .
- Cohen H., Oesterle J. Dimensions des espaces de formes modulaires. LNM., 1976, Vol. 627, pp. 69–78 .
- Biagioli A.J.F. The construction of modular forms as products of transforms of the Dedekind eta-function. Acta Arithm., 1990, Vol. LIV., no. 4, pp. 273–300 .