PROBLEM WITH AN INTEGRAL CONDITION FOR ONE-DIMENSIONAL HYPERBOLIC EQUATION
- Authors: Bogatov A.V.1
-
Affiliations:
- Samara National Research University
- Issue: Vol 24, No 4 (2018)
- Pages: 7-12
- Section: Articles
- URL: https://journals.ssau.ru/est/article/view/6497
- DOI: https://doi.org/10.18287/2541-7525-2018-24-4-7-12
- ID: 6497
Cite item
Full Text
Abstract
In this paper, we study a nonlocal problem with an integral condition for a one-dimensional hyperbolic equation arising in the study of vibrations of the rod. The conditions for the input data providing unambiguous solvability of the problem are obtained, the proof of the existence and uniqueness of the solution of the problem is carried out.
About the authors
A. V. Bogatov
SamaraNational Research University
Author for correspondence.
Email: morenov@ssau.ru
References
- Cannon J.R. The solution of the heat equation subject to the specification of energy. Quart. Appl. Math., 1963, no. 21. Available at: https://www.jstor.org/stable/43635292 .
- Pulkina L.S. Kraevye zadachi dlya giperbolicheskogo uravneniya s nelokalnymi usloviyami I i II roda . Izv. vuzov. Ser.: Matematika , 2012, no. 4, pp. 74–83. Available at: http://mi.mathnet.ru/ivm8596 .
- Gordeziani D.G., Avalishvili G.A. Resheniya nelokalnykh zadach dlya odnomernykh kolebanii sredy . Matem. modelir. , 2000, no. 1, pp. 94–103. Available at: http://mi.mathnet.ru/mm832 .
- Avalishvili G., Avalishvili M., Gordeziani D. On integral nonlocal boundary problems for some partial differential equations. Bulletin of the Georgian National Academy of Sciences, 2011, no. 5(1), pp. 31–37. Available at: http://science.org.ge/old/moambe/5-1/31-37%20Avalishvili.pdf .
- Pulkina L.S. Zadachi s neklassicheskimi usloviyami dlya giperbolicheskikh uravnenii . Samara: Izd-vo Samarskii universitet, 2012 .
- Ilyin V.A., Tikhomirov V.V. Volnovoe uravnenie s granichnym upravleniem na dvukh kontsakh i zadacha o polnom uspokoenii kolebatelnogo protsessa . Differents. uravneniya , 1999, Vol. 35, no. 5, pp. 697–708. Available at: http://mi.mathnet.ru/de9920 .
- Ilyin V.A., Moiseev E.I. O edinstvennosti resheniya smeshannoi zadachi dlya volnovogo uravneniya s nelokalnymi granichnymi usloviyami . Differents. uravneniya , 2000, Vol. 36, no. 5, pp. 728–733. DOI: https://doi.org/10.1007/BF02754231 .
- Khazanov Kh.S. Mekhanicheskie kolebaniya sistem s raspredelennymi parametrami: ucheb. posobie . Samara: Samar. Gosud. Aerokosmich. Un-t, 2002, 80 p. .
- Veits V.L., Dondoshanskiy V.K., Chiryaev V.I. Vynuzhdennye kolebaniya v metallorezhushchikh stankakh . M.; L.: Mashgiz, 1959, 288 p. .
- Nerubay M.S., Shtrikov B.L., Kalashnikov V.V. Ultrazvukovaya mekhanicheskaya obrabotka i sborka . Samara: Samarskoe knizhnoe izd-vo, 1995, 191 p. .
- Beylin A.B., Pulkina L.S. Zadacha o kolebaniyakh sterzhnya s neizvestnym usloviem ego zakrepleniya na chasti granitsy . Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya , 2017. Vol. 23, no. 2, pp. 7–14. DOI: http://dx.doi.org/10.18287/2541-7525-2017-23-2-7-14 .
- Fedotov I.A., Polyanin A.D., Shatalov M.Yu. Teoriya svobodnykh i vynuzhdennykh kolebanii tverdogo sterzhnya, osnovannaya na modeli Releya . Dokdady RAN , 2007, Vol. 417, no. 1, pp. 56–61 .
- Beylin A.B., Pulkina L.S. Zadacha o prodolnykh kolebaniyakh sterzhnya s dinamicheskimi granichnymi usloviyami . Vestnik SamGU. Estestvennonauchnaya seriya , 2014, no. 3(114), pp. 9–19. Available at: http://vestnikoldsamgu.ssau.ru/articles/3-2014-1.pdf .
- Beylin A.B. Zadacha o prodolnykh kolebaniyakh uprugo zakreplennogo nagruzhennogo sterzhnya . Vestnik Samarskogo gos. Tekh. Un-ta. Ser.: Fiz.-mat. nauki , 2016, Vol. 20, no. 2, pp. 249–258. DOI: https://doi.org/10.14498/vsgtu1474 .
- Mikhlin S.G. Lineinye uravneniya v chastnykh proizvodnykh . M.: Vysshaya shkola, 1977, 241 p. .