EQUATIONS OF STATE OF A SOLID BODY WITH A REDUCED DERIVATIVE RIEMANN — LIOUVILLE



Cite item

Full Text

Abstract

Two equations of state of a solid with the use of the fractional Riemann — Liouville derivative are obtained. Both equations are low-parametric (without involving a large number of adjustable parameters). In the proposed approach, the main task is to determine the parameters of the equation from the experimental data of the phase diagrams of the investigated substances.

About the authors

M. O. Mamchuev

Институт прикладной математики и автоматизации

Author for correspondence.
Email: morenov.sv@ssau.ru
Russian Federation

References

  1. Fortov V.E. Uravneniia sostoianiia veshchestva ot ideal’nogo gaza do kvark-gliuonnoi plazmy . M.: Fizmatlit, 2013, 493 p. .
  2. Zharkov V.N., Kalinin V.A. Uravneniia sostoianiia tverdykh tel pri vysokikh davleniiakh i temperaturakh . M.: Nauka, 1968, 311 p. .
  3. Bushman A.V., Fortov V.E. Modeli uravneniia sostoianiia veshchestva . UFN , 1983, Vol ˙140, no. 2, pp. 177–232 . DOI: https://doi.org/10.3367/UFNr.0140.198306a.0177.
  4. Nakhushev A.M. Drobnoe ischislenie i ego primenenie . M.: Fizmatlit, 2003, 272 p. .
  5. Nakhusheva V.A. Ob odnom klasse uravnenii sostoianiia veshchestva . Dokl. AMAN ), 2005, Vol. 7, no. 2, pp. 101–107 .
  6. Nakhushev A.M. Ob uravneniiakh sostoianiiakh nepreryvnykh odnomernykh sistem i ikh prilozheniiakh . Nalchik: Logos, 1995, 50 p. .
  7. Rekhviashvili S.Sh. Primenenie drobnogo integrodifferentsirovaniia dlia rascheta termodinamicheskikh svoistv poverkhnostei . FTT , 2007, no. 4, pp. 756–759 .
  8. Rekhviashvili S.Sh. Uravneniia sostoianiia tverdogo tela s fraktal’noi strukturoi . Pis’ma v ZhTF , 2010, no. 17, pp. 42–47 .
  9. Alisultanov Z.Z, Meilanov R.P. Teplofizicheskie svoistva kvantovo-statisticheskikh sistem s drobno-stepennym spektrom . Journal of Siberian Federal University. Mathematics and Physics, 2012, Vol. 5, no. 3, pp. 349–358 .

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Mamchuev M.O.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies