BOUNDARY VALUE PROBLEMS FOR A CLASS OF NONLOCAL INTEGRO-DIFFERENTIAL EQUATIONS WITH DEGENERATION
- Authors: Kozhanov A.I.1
-
Affiliations:
- Sobolev Institute of Mathematics
- Issue: Vol 23, No 4 (2017)
- Pages: 19-24
- Section: Articles
- URL: https://journals.ssau.ru/est/article/view/5708
- DOI: https://doi.org/10.18287/2541-7525-2017-23-4-19-24
- ID: 5708
Cite item
Full Text
Abstract
In this paper, we study the solvability of boundary value problems for integro-differential equation. One of the features of the equations under consideration is the possibility of degeneration when some of coefficients vanish. The other feature is that the equations under consideration are nonlocal. This motivates modifications in statement of problems. Nonlocal nature of equation in particular leads to nonlocal conditions. Sufficient conditions providing well-posedness of four problems are obtained.
About the authors
A. I. Kozhanov
Sobolev Institute of Mathematics
Author for correspondence.
Email: morenov.sv@ssau.ru
Russian Federation
References
- Nahushev A.M. Nagruzhennye uravneniia i ikh primenenie . M.: Nauka, 2012 .
- Dzhenaliev M.T. K teorii lineinykh kraevykh zadach dlia nagruzhennykh differentsial’nykh uravnenii . Almaty: In-t teoreticheskoi i prikladnoi matematiki, 1995 .
- Egorov I.E., Fedorov V.E. Neklassicheskie uravneniia matematicheskoi fiziki vysokogo poriadka . Novosibirsk: Vychisl. Tsentr SO RAN, 1995 .
- Efimova E.S., Egorov I.E., Kolesova M.S. Error Estimate to the Stationary Galerkin Method Applied to a Semilinear Parabolic Equation with Alternating Time Direction. Journal of Mathematical Sciences, 2016, 213(6), pp. 838–843 .
- Egorov I.E., Fedorov V.E., Tihonova I.M., Efimova E.S. Metod Galerkina dlia neklassicheskikh uravnenii matematicheskoi fiziki . In: VIII Mezhdunarodnaia konferentsiia po matematicheskomu modelirovaniiu. Iakutsk. 4–8 iiulia 2017 g. Tezisy dokladov , p. 11 .
- Bitsadze A.V. Uravneniia matematicheskoi fiziki . M.: Nauka, 1976 .
- Ladyzhenskaya O.A., Uraltseva N.N. Lineinye i kvazilineinye uravneniia ellipticheskogo tipa . M.: Nauka, 1973 .