ON THE EXTENSION OF NON-ADDITIVE SET FUNCTIONS



Cite item

Full Text

Abstract

In this paper we prove theorems on the extension of non-additive set functions domain of definition of which, generally speaking, is not a ring, on the sigma-ring of sets. It is shown that continuous from the top at zero, the exhaustive compositional submersion of the first or second kind can be continued from the multiplicative class of sets to the sigma-ring of sets to a complete quasitriangular submerse complete at zero. Conditions are found under which the composition sub-measure of the first (second) kind extends to the composition sub-measure of the same kind. The continuation of the composite submerses obtained in the work is, in general, not unique. Some particular types of submeasures are considered, for which uniqueness of continuation takes place.

About the authors

T. A. Sribnaya

Samara National Research University

Author for correspondence.
Email: morenov.sv@ssau.ru
Russian Federation

References

  1. Ricanova Z. On the extension of measures with values in partially ordered semigroups. Math. Nachr, 1982, Vol. 106, pp. 201–209 .
  2. Boccuto A. On Stone-type extensions for group-valued measures. Math. Slov., 1995, Vol. 45, № 3, pp. 309–315 .
  3. Dobrakov I. On extension of vector polymeasures, II. Math. Slov., 1995, Vol. 45, № 4, pp. 377–380 .
  4. Aleksyuk V.N., Beznosikov F.D. Prodolzhenie nepreryvnoi vneshnei mery na bulevoi algebre . Izv. vuzov. Matem. , 1972, no. 4, pp. 3–9 .
  5. Guselnikov N.S. O prodolzhenii kvazilipshitsevykh funktsii mnozhestva . Matem. zametki , 1975, Vol. 17, no 1, pp. 21–31 .
  6. Malyugin S.A. Topologiia pokryvaiushchikh mnozhestv i nepreryvnoe prodolzhenie vneshnikh mer . Matem. zametki , 1979, Vol. 26, no 2, pp. 285–292 .
  7. Saveliev L.Ya. Vneshnie mery i vneshnie topologii . Cib. matem. zhurn. , 1983, no. 2, pp. 133–149 .
  8. Klimkin V.M., Sribnaya T.A. Prodolzhenie kvazitreugol’noi submery . Izv. vuzov. Matem. , 1992, no 2, pp. 42–48 .
  9. Sribnaya T.A. Prodolzhenie funktsii mnozhestva so znacheniiami v chastichno uporiadochennoi polugruppe . Vestnik Samarskogo gosuniversiteta. Estestvennonauchnaia seriia , 2007, no 6(56), pp. 269–280 .
  10. Drewnowski L. Topological rings of sets, continuous set functions, integration, I, II. Bull. Acad. Polon. Sci., Ser. sci Math. Astr. Phus, 1972, Vol. 20, no 4, pp. 269–276, 277–286 .
  11. Bogachev V.I. Osnovy teorii mery . In: Moskva-Izhevsk: NITs Reguliarnaia i khaoticheskaia dinamika , 2006, Vol. 1, 583 p. .
  12. Sribnaya T.A. O prodolzhenii kompozitsionnoi funktsii mnozhestva . In: Depository in the All-Union Institute of Scientific and Technical Information of the Russian Academy of Sciences. Samara National Research University. Samara, 2013, no 52-В2013, 15 p. .

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Sribnaya T.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies