PROBLEM WITH NONLOCAL BOUNDARY CONDITION FOR A HYPERBOLIC EQUATION



Cite item

Full Text

Abstract

In this paper we consider an initial-boundary problem with nonlocal boundary condition for one-dimensional hyperbolic equation. Nonlocal condition is dynamic so as represents a relation between values of derivatives with respect of spacial variables of a required solution, first-order derivatives with respect to time variable and an integral of a required solution of spacial variable. We prove the existence and uniqueness of a generalized solution, which belongs to the Sobolev space. To prove uniquely solvability of the problem techniques developed specifically for research nonlocal problems are used. The application of these methods allowed us to obtain a priori estimates, through which the uniqueness of the solution is proved. The proof is based on the a priori estimates obtained in this paper and Galyorkin’s procedure.

About the authors

V. A. Kirichek

Samara National Research University

Author for correspondence.
Email: morenov.sv@ssau.ru
Russian Federation

References

  1. Tikhonov A.N., Samarsky A.A. Uravneniia matematicheskoi fiziki . M.: Nauka, 1977, 728 p. .
  2. Tobias Louw, Scott Whitney, Anu Subramanian, and Hendrik Viljoen. Forced wave mation with internal and boundary damping. Journal of applied physics 111, 014702 (2012) .
  3. Korpusov M.O. Razrushenie v neklassicheskikh volnovykh uravneniiakh . М.: URSS, 2010, 240 p. .
  4. Doronin G.G., Lar’kin N.A., Souza A.J. A hyperbolic problem with nonlinear second-order boundary damping. EJDE, 1998, no. 28, pp. 1–10 .
  5. Beylin A.B., Pulkina L.S. Zadacha o prodol’nykh kolebaniiakh sterzhnia s dinamicheskimi granichnymi usloviiami . Vestnik SamGU , 2014, no. 3(114), pp. 9–19 .
  6. Pulkina L.S. Zadacha s dinamicheskim nelokal’nym usloviem dlia psevdogiperbolicheskogo uravneniia . Izvestiia vuzov. Matematika , 2016, no. 9, pp. 42–50 .
  7. Ladyzhenskaya O.A. Kraevye zadachi matematicheskoi fiziki . M.: Nauka, 1973, 407 p. .
  8. Beylin S.A. (Ob odnoi kraevoi zadache dlia volnovogo uravneniia) . Vestnik SamGU , 2011, no. 5(86), pp. 12–17 .
  9. Rogozhnikov A.M. O razlichnykh tipakh granichnykh uslovii dlia odnomernogo uravneniia kolebanii . Sbornik statei molodykh uchenykh VMK MGU , 2013, Vol. 10, pp. 188–214 .
  10. Cannon J.R. The solution of tne heat equation subject to the specification of energy. Quart. Appl. Math., 1963, Vol. 21, pp. 155–160 .
  11. Kamynin L.I. Ob odnoi kraevoi zadache teorii teploprovodnosti s neklassicheskimi granichnymi usloviiami . Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki , 1964, Vol. 4, no. 6, pp. 1006–1024 .
  12. Pulkina L.S. Ob odnoi neklassicheskoi zadache dlia vyrozhdaiushchegosia giperbolicheskogo uravneniia . Izvestiia vuzov. Matematika , 1991, no. 11, pp. 48–51 .
  13. Pulkina L.S. Ob odnoi nelokal’noi zadache dlia vyrozhdaiushchegosia giperbolicheskogo uravneniia . Matematicheskie zametki , 1992, Vol. 51, no. 3, pp. 48–51 .

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Kirichek V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies