ON CERTAIN CONTROL PROBLEM OF DISPLACEMENT AT ONE ENDPOINT OF A THIN BAR
- Authors: Beylin A.B.1
-
Affiliations:
- Samara State Technical University
- Issue: Vol 23, No 3 (2017)
- Pages: 12-17
- Section: Articles
- URL: https://journals.ssau.ru/est/article/view/5496
- DOI: https://doi.org/10.18287/2541-7525-2017-23-3-12-17
- ID: 5496
Cite item
Full Text
Abstract
In this paper, we study an inverse problem for hyperbolic equation. This problem arises when we consider vibration of a thin bar if one endpoint is fixed but behavior of the other is unknown and is the subject to find. Overdetermination is given in the form of integral with respect to spacial variable. The problem is reduced to the second kind Volterra integral equation. Special case is considered.
About the authors
A. B. Beylin
Samara State Technical University
Author for correspondence.
Email: morenov.sv@ssau.ru
Russian Federation
References
- Rao J.S. Advanced Theory of Vibration. N.Y.: Wiley, 1992, 431 p. .
- Fedotov I.A., Polyanin A.D., Shatalov M.Yu. Teoriia svobodnykh i vynuzhdennykh kolebanii tverdogo sterzhnia, osnovannaia na modeli Releia . Doklady RAN , 2007, Vol. 417, no. 1, pp. 56–61 .
- Beylin A.B., Pulkina L.S. Zadacha o prodol’nykh kolebaniiakh sterzhnia s dinamicheskimi granichnymi usloviiami . Vestnik SamGU. Estestvennonauchnaia seriia , 2014, no. 3(114), pp. 9–19 .
- Beylin A.B. Zadacha o prodol’nykh kolebaniiakh uprugo zakreplennogo nagruzhennogo sterzhnia . Vestnik Samarskogo gos. Tekh. Un-ta. Seriia: Fiz.-mat. nauki , 2016, Vol. 20, no. 2, pp. 249–258 .
- Babakov I.M. Teoriia kolebanii . M.: Nauka, 1968, 560 p. .
- Khazanov Kh.S. Mekhanicheskie kolebaniia sistem s raspredelennymi parametrami: Ucheb. posobie . Samara: Samar. Gosud. Aerokosmich. Un-t, 2002, 80 p. .
- Veiz V.L., Dondoshansky V.K., Chiriaev V.I. Vynuzhdennye kolebaniia v metallorezhushchikh stankakh . M-L.: Mashgiz, 1959, 288 p. .
- Kumabe D. Vibratsionnoe rezanie . M.: Mashinostroenie, 1985, 424 p. .
- Ilin V.A., Tikhomirov V.V. Volnovoe uravnenie s granichnym upravleniem na dvukh kontsakh i zadacha o polnom uspokoenii kolebatel’nogo protsessa . Differents. uravneniia , 1990, Vol. 35, no. 5, pp. 692–704 .
- Kamynin V.L. Obratnaia zadacha opredeleniia mladshego koeffitsienta v parabolicheskom uravnenii pri uslovii integral’nogo nabliudeniia . Matem. zametki , 2013, 94(2), pp. 207–217 .
- Cannon J.R., Lin Y. Determination of a parameter p(t) in some quasi-linear parabolic differential equations. Inverse Problems, 1988, no. 4, pp. 35–45 .
- Denisov A.M. Obratnaia zadacha dlia giperbolicheskogo uravneniia s nelokal’nym kraevym usloviem, soderzhashchim zapazdyvaiushchii argument . Trudy instituta matematiki i mekhaniki UrO RAN , 2012, Vol. 18, no. 1 .
- Beylin A.B., Pulkina L.S. Zadacha o kolebaniiakh sterzhnia s neizvestnym rezhimom na chasti granitsy . Vestnik SamGU. Estestvennonauchnaia seriia , 2017, no. 2, pp. 9–19 .
- Gradstein V.S., Ryzhik I.M. Tablitsy integralov, summ, riadov i proizvedenii . M: Fizmatgiz, 1963, 1100 p. .
- Mikhlin S.G. Lektsii po lineinym integral’nym uravneniiam . М.: Fizmatgiz, 1959, 232 p. .