ON CERTAIN CONTROL PROBLEM OF DISPLACEMENT AT ONE ENDPOINT OF A THIN BAR



Cite item

Full Text

Abstract

In this paper, we study an inverse problem for hyperbolic equation. This problem arises when we consider vibration of a thin bar if one endpoint is fixed but behavior of the other is unknown and is the subject to find. Overdetermination is given in the form of integral with respect to spacial variable. The problem is reduced to the second kind Volterra integral equation. Special case is considered.

About the authors

A. B. Beylin

Samara State Technical University

Author for correspondence.
Email: morenov.sv@ssau.ru
Russian Federation

References

  1. Rao J.S. Advanced Theory of Vibration. N.Y.: Wiley, 1992, 431 p. .
  2. Fedotov I.A., Polyanin A.D., Shatalov M.Yu. Teoriia svobodnykh i vynuzhdennykh kolebanii tverdogo sterzhnia, osnovannaia na modeli Releia . Doklady RAN , 2007, Vol. 417, no. 1, pp. 56–61 .
  3. Beylin A.B., Pulkina L.S. Zadacha o prodol’nykh kolebaniiakh sterzhnia s dinamicheskimi granichnymi usloviiami . Vestnik SamGU. Estestvennonauchnaia seriia , 2014, no. 3(114), pp. 9–19 .
  4. Beylin A.B. Zadacha o prodol’nykh kolebaniiakh uprugo zakreplennogo nagruzhennogo sterzhnia . Vestnik Samarskogo gos. Tekh. Un-ta. Seriia: Fiz.-mat. nauki , 2016, Vol. 20, no. 2, pp. 249–258 .
  5. Babakov I.M. Teoriia kolebanii . M.: Nauka, 1968, 560 p. .
  6. Khazanov Kh.S. Mekhanicheskie kolebaniia sistem s raspredelennymi parametrami: Ucheb. posobie . Samara: Samar. Gosud. Aerokosmich. Un-t, 2002, 80 p. .
  7. Veiz V.L., Dondoshansky V.K., Chiriaev V.I. Vynuzhdennye kolebaniia v metallorezhushchikh stankakh . M-L.: Mashgiz, 1959, 288 p. .
  8. Kumabe D. Vibratsionnoe rezanie . M.: Mashinostroenie, 1985, 424 p. .
  9. Ilin V.A., Tikhomirov V.V. Volnovoe uravnenie s granichnym upravleniem na dvukh kontsakh i zadacha o polnom uspokoenii kolebatel’nogo protsessa . Differents. uravneniia , 1990, Vol. 35, no. 5, pp. 692–704 .
  10. Kamynin V.L. Obratnaia zadacha opredeleniia mladshego koeffitsienta v parabolicheskom uravnenii pri uslovii integral’nogo nabliudeniia . Matem. zametki , 2013, 94(2), pp. 207–217 .
  11. Cannon J.R., Lin Y. Determination of a parameter p(t) in some quasi-linear parabolic differential equations. Inverse Problems, 1988, no. 4, pp. 35–45 .
  12. Denisov A.M. Obratnaia zadacha dlia giperbolicheskogo uravneniia s nelokal’nym kraevym usloviem, soderzhashchim zapazdyvaiushchii argument . Trudy instituta matematiki i mekhaniki UrO RAN , 2012, Vol. 18, no. 1 .
  13. Beylin A.B., Pulkina L.S. Zadacha o kolebaniiakh sterzhnia s neizvestnym rezhimom na chasti granitsy . Vestnik SamGU. Estestvennonauchnaia seriia , 2017, no. 2, pp. 9–19 .
  14. Gradstein V.S., Ryzhik I.M. Tablitsy integralov, summ, riadov i proizvedenii . M: Fizmatgiz, 1963, 1100 p. .
  15. Mikhlin S.G. Lektsii po lineinym integral’nym uravneniiam . М.: Fizmatgiz, 1959, 232 p. .

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Beylin A.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies