Cite item


In the article we consider structure problems in the theory of modular forms. The phenomenon of the exact cutting for the spaces Sk(Γ0(N), χ), where χ is a quadratic character with the condition χ(−1) = = (−1)k . We prove that for the levels N ̸= 3, 17, 19 the cutting function is a multiplicative eta–product of an integral weight. In the article we give the table of the cutting functions. We prove that the space of an cutting function is one–dimensional. Dimensions of the spaces are calculated by the Cohen-Oesterle formula, the orders in cusps are calculated by the Biagioli formula.

About the authors

G. V. Voskresenskaya

Samara National Research University

Author for correspondence.
Russian Federation


  1. Koblitz N. Vvedenie v ellipticheskie krivye i moduliarnye formy . M.:Mir, 1988, 320 p. .
  2. Knapp A. Ellipticheskie krivye . M.: Faktorial Press, 2004, 488 p. .
  3. Gordon B., Sinor D. Multiplicative properties of −products. L.N.M., 1987, Vol. 1395, pp. 173–200 .
  4. Ono K. The web of modularity: arithmetic of the coefficients of modular forms and q-series. A.M.S. Providence, 2004, 216 p. .
  5. Dummit D., Кisilevsky H., МасKay J. Multiplicative products of − functions. Contemp.Math., 1985, Vol. 45, pp. 89–98 .
  6. Voskresenskaya G.V. One special class of modular forms and group representations. Journal de Theorie des Nombres de Bordeaux, 1999, Vol. 11, pp. 247–262 .
  7. Cohen H., Oesterle J. Dimensions des espaces de formes modulaires. LNM, 1976, Vol. 627, pp. 69–78 .
  8. Voskresenskaya G.V. Eta-funktsiia Dedekinda v sovremennykh issledovaniiakh . Itogi nauki i tekhn. Ser.: Sovrem. mat. i ee pril. Temat.obz. , 2017, Vol. 136, pp. 103–137 .
  9. Chudakov N.G. Vvedenie v teoriiu L — funktsii Dirikhle . М.:Gostekhizdat, 1947, 204 p. .
  10. Biagioli A.J.F. The construction of modular forms as products of transforms of the Dedekind eta-function. Acta Arithm., 1990, Vol. LIV, no. 4, pp. 273–300 .

Copyright (c) 2017 Г. В. Воскресенская

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies