ON SOLVABILITY OF NONLOCAL PROBLEM FOR THIRD-ORDER EQUATION



Cite item

Full Text

Abstract

In this paper nonlocal problem with integral conditions for partial differential equation of the third order is considered. The existence of a unique classical solution is proved in rectangular domain. The proof is carried out by the method of auxiliary problems. At first the problem for a new function for partial differential equation of the first order is considered. Then the solvability of integral analogue of Goursat problem for hyperbolic equation of the second order is proved by equivalent reduction of the problem to the Volterra integral equation of the second kind.

About the authors

O. M. Ketchina

Samara State University of Social Sciences and Education

Author for correspondence.
Email: morenov@ssau.ru
Russian Federation

References

  1. Pulkina L.S. O razreshimosti v L2 nelokal’noi zadachi s integral’nymi usloviiami dlia giperbolicheskogo uravneniia . Differentsial’nye uravneniia , 2000, no. 2, pp. 279–280 .
  2. Zhegalov V.I., Utkina E.A. Ob odnom psevdoparabolicheskom uravnenii tret’ego poriadka . Izvestiia vuzov. Matematika , 1999, № 10, pp. 73–76 .
  3. Utkina E.A. O edinstvennosti resheniia poluintegral’noi zadachi dlia odnogo uravneniia chetvertogo poriadka . Vestnik SamGU — Estestvennonauchnaia seriia , 2010, № 4(78), pp. 98–102 .
  4. Utkina E.A. Kharakteristicheskaia granichnaia zadacha dlia uravneniia tret’ego poriadka s psevdoparabolicheskim operatorom i so smeshcheniem argumentov iskomoi funktsii . Izvestiia vuzov. Matematika , 2014, № 2, pp. 54–60 .
  5. Mironov A.N., Mironova L.B. Ob invariantakh Laplasa dlia uravneniia s dominiruiushchei chastnoi proizvodnoi tret’ego poriadka s dvumia nezavisimymi peremennymi . Matem. zametki , (2016), no. 99:110, pp. 89–96 .
  6. Mironov A.N., Mironova L.B. Ob invariantakh Laplasa dlia odnogo uravneniia chetvertogo poriadka s dvumia nezavisimymi peremennymi . Izvestiia vuzov. Matematika , 2014, no. 10, pp. 27–34 .
  7. Asanova A.T. Nelokal’naia zadacha s integral’nymi usloviiami dlia sistemy giperbolicheskikh uravnenii v kharakteristicheskom priamougol’nike . Izvestiia vuzov. Matematika , 2017, no. 5, pp. 11–25 .
  8. Asanova A.T. O nelokal’noi zadache s integral’nym smeshcheniem dlia sistem giperbolicheskikh uravnenii so smeshannoi proizvodnoi . Matem. zhurn. , no. 8:1(2008), pp. 9–16 .
  9. Beshtokov M.Kh. Apriornye otsenki resheniia nelokal’nykh kraevykh zadach dlia psevdoparabolicheskogo uravneniia . Vladikavkazskii matematicheskii zhurnal , 2013, Vol. 15, Issue 3, pp. 19–36 .
  10. Lukina G.A. Kraevye zadachi s integral’nymi granichnymi usloviiami po vremeni dlia uravnenii tret’ego poriadka . Matem. zametki IaGU , 2010, Vol. 17, Issue 2, pp. 75–97 .
  11. Kozhanov A.I., Popov N.S. O razreshimosti nekotorykh zadach so smeshcheniem dlia psevdoparabolicheskikh uravnenii . Vestnik NGU. Seriia: Matematika , 2010, Vol. 100, Issue 3, pp. 46-–62 .
  12. Filippov А.F. Vvedenie v teoriiu differentsial’nykh uravnenii: Uchebnik . M.: KomKniga, 2007, 240 p. .
  13. Nakhusheva Z.A. Ob odnoi nelokal’noi zadache dlia uravnenii v chastnykh proizvodnykh . Differentsial’nye uravneniia , 1986, no. 1, pp. 171–174 .
  14. Pul’kina L.S., Ketchina O.M. Nelokal’naia zadacha s integral’nymi usloviiami dlia giperbolicheskogo uravneniia v kharakteristicheskom priamougol’nike . Vestnik SamGU — Estestvennonauchnaia seriia , 2009, no. 2(68), pp. 80—88 .
  15. Mikhlin S.G. (Lektsii po lineinym integral’nym uravneniiam) . M.: Fizmatgiz, 1959, 232 pp. .

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 1970 Ketchina O.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies