CUSP FORMS WITH CHARACTERS OF THE LEVEL P4



Cite item

Full Text

Abstract

In the article we prove structure theorems for spaces of cusp forms with characters of a level p. The spaces are decomposed in the direct sum of three subspaces. The first subspace is essencial. The eta-quotions play an important role in the investigations. The divisor of the functions is concentrated in cusps. The theorem about the structure of spaces of modular forms with characters is proved. We discuss the question about generators of these spaces and K.Ono’s problem. Dimensions of spaces are calculated by the Cohen — Oesterle formula, the orders in cusps are calculated by the Biagioli formula.

About the authors

G. V. Voskresenskaya

Department of Algebra and Geometry,
Samara University, 34, Moskovskoye Shosse, Samara, 443086, Russian Federation.

Author for correspondence.
Email: morenov.sv@ssau.ru

References

  1. Ono K. The web of modularity: arithmetic of the coefficients of modular forms and q-series. A.M.S., Providence, 2004, 216 p. .
  2. Koblitz N. Vvedenie v ellipticheskie krivye i moduliarnye formy . M.: Mir, 1988, 320 p. .
  3. Knapp A. Ellipticheskie krivye . M.: Faktorial Press, 2004, 488 p. .
  4. Voskresenskaya G.V. O predstavlenii moduliarnykh form v vide odnorodnykh mnogochlenov . Vestnik Samarskogo gosudarstvennogo universiteta , 2015, no. 6(128), pp.40–49 .
  5. Voskresenskaya G.V. O prostranstvakh moduliarnykh form chetnogo vesa . Vestnik Samarskogo gosudarstvennogo universiteta , 2014, no. 10(121), pp. 38–47 .
  6. Gordon B., Sinor D. Multiplicative properties of products. L.N.M., 1987, V. 1395, pp. 173–200 .
  7. Voskresenskaya G.V. One special class of modular forms and group representations. Journal de Theorie des Nombres de Bordeaux, 1999, Vol. 11, pp. 247–262 .
  8. Dummit D., Кisilevsky H., МасKay J. Multiplicative products of -functions. Contemp. Math., 1985, Vol. 45, pp. 89-98 .
  9. Cohen H., Oesterle J. Dimensions des espaces de formes modulaires. LNM, 1976, Vol. 627, pp. 69–78 .
  10. Biagioli A.J.F. The construction of modular forms as products of transforms of the Dedekind eta-function. Acta Arithm., 1990, Vol. LIV, no. 4, pp. 273–300 .

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Voskresenskaya G.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies