Optimization of honeycomb sandwich floor panels made of polymer-matrix low-combustible composite materials based on high-strength carbon and glass fibers and adhesive binder


Cite item

Full Text

Abstract

The article deals with the task of designing aircraft honeycomb sandwich floor panels considering experimental data on the mechanical properties of new high-strength low-combustible composite materials. The developed experimental and analytical design procedure and optimization algorithm are described. The design task is formulated in terms of nonlinear mathematical programming in which the mass per square meter of the construction is the objective function. The thickness of the base layers, the height of honeycomb core and some other parameters are considered as the design variables. The proposed visual interpretation of the optimal design task allows reducing possible design solutions based on the experimental data to an enumeration of a limited number of design alternates. The article presents a demo task and the results of designing floor panes for an advanced passenger aircraft in the aisle area using a new low-combustible composite material. The floor panel is regarded as a continuous multiply supported plate loaded with distributed load. The proposed grapho-analytical method makes it possible to form the area of rational designs that differ from the optimal one in terms of mass by a specified allowable value. The performed computational and experimental analysis shows that with the use of the new material, a floor panel can be designed with base layers made of carbon or fiberglass and lightweight honeycomb filler with the mass of a square meter from 2,9 to 3,4 kg, which is the state-of-the-art.

About the authors

V. A. Komarov

Samara National Research University

Author for correspondence.
Email: vkomarov@ssau.ru

Doctor of Science (Engineering), Professor of the Department of Aircraft Construction and Design; Director of the Research and Education Center
of Aircraft Construction (AVICON)

Russian Federation

K. E. Kutsevich

All-Russian Scientific Research Institute of Aviation Materials

Email: kucevichke@viam.ru

Candidate of Science (Engineering), Chief of the Laboratory Sector of Adhesives and Adhesive Prepregs

Russian Federation

S. A. Pavlova

Samara National Research University

Email: pavlova-sva@yandex.ru

Engineer of the Research and Education Center of Aircraft Construction

Russian Federation

T. Yu. Tyumeneva

All-Russian Scientific Research Institute of Aviation Materials

Email: kucevichke@viam.ru

Deputy Chief of the Laboratory of Adhesives and Adhesive Prepregs

Russian Federation

References

  1. Aleksandrov A.Ya., Krushin L.I. Trekhsloynye plastinki i obolochki. Prochnost', ustoychivost', kolebaniya. T. 2 [Sandwich plates and shells. Strength, stability, vibration.V. 2]. Moscow: Mashinostroenie Publ., 1968. 326 p.
  2. Gimmelfarb A.L. Osnovy konstruirovaniya v samoletostroenii [Principles of design in aircraft engineering]. Moscow: Mashinostroenie Publ., 1980. 370 p.
  3. Hertel H. Leichtbau. Berlin: Springer-Verlag, 1960. 526 p.
  4. Niu M.C.Y. Airframe structural design: Practical design information and data on aircraft structures. Hong Kong: Conmilit Press Ltd, 1988. 612 p.
  5. Allen H.G. Analysis and design of structural sandwich panels. London: Pergamon, 1969. 300 p.
  6. Aleksandrov A.Ya. Raschet trekhsloynykh paneley [Calculation of Sandwich Panels]. Moscow: Oborongiz Publ., 1960. 271 p.
  7. Kobelev V.N., Kovarskiy L.M., Timofeev S.I. Raschet trekhsloynykh konstruktsiy [Calculation of sandwich structures]. Moscow: Mashinostroenie Publ., 1984. 304 p.
  8. Matthews F.L., Rawlings R.D. Composite materials: engineering and science. Amsterdam: Elsevier, 1999. 480 p.
  9. Vasiliev V.V., Morozov E.V. Advanced mechanics of composite materials and structural elements. Amsterdam: Elsevier, 2013. 832 p. doi: 10.1016/C2011-0-07135-1
  10. Kablov E.N. Russia needs new generation materials. Rare Earths. 2014. No. 3. P. 8-13. (In Russ.)
  11. Dushin M.I., Ermolaeva A.M., Katyrev I.Ya., Nedoynov P.N., Pavlova M.A., Perov B.V., Suvorov B.D., Tolstobrov E.P. Carbon fibers in sandwich floor panels. Aviation Industry. 1978. No. 6. P. 8-12. (In Russ.)
  12. Shokin G.I., Shershak P.V., Andriunina M.A. Experience in development and manufacture of honeycomb floor panels made of domestic materials. Aviation Industry. 2017. No. 1. P. 32-39. (In Russ.)
  13. Shershak V.P., Shokin G.I., Egorov V.N. Technological characteristics of the fabrication of the aircraft floor sandwich honeycomb panels. Aviation Industry. 2014. No. 3. P. 34-42. (In Russ.)
  14. Komarov V.A., Kishov E.A., Kutsevich K.E., Pavlov A.A., Pavlova S.A., Tyumeneva T.Yu. Development of the requirements for the mechanical characteristics of composite materials considering the application field. Klei. Germetiki. Tekhnologii. 2020. No. 2. P. 13-19. (In Russ.). doi: 10.31044/1813-7008-2020-0-2-13-19
  15. Kutsevich K.E., Dementeva L.A., Lukina N.F., Tyumeneva T.Yu. Development of requirements for mechanical characteristics of composite material, taking into account field of application. Aviation Materials and Technologies. 2017. No. S. P. 379-387. (In Russ.). doi: 10.18577/2071-9140-2017-0-S-379-387
  16. Vicario A.A., Toland R.H. Failure criteria and failure analysis of composite structural components. In book: «Composite materials». V. 7. Structural design and analysis. New York: Academic Press, 1975. P. 52-98.
  17. Komarov V.A., Kishov E.A., Charkviani R.V., Pavlov A.A. Numerical and experimental study of the strength of fabric carbon-epoxy composite structures. Vestnik of Samara State Aerospace University. 2015. V. 14, no. 2. P. 106-112. (In Russ.). doi: 10.18287/2412-7329-2015-14-2-106-112
  18. Kutsevich K.E., Tyumeneva T.Yu., Petrova A.P. Influence of fillers on properties of adhesive prepregs and PCM on their basis. Aviation Materials and Technologies. 2017. No. 4 (49). P. 51-55. (In Russ.). doi: 10.18577/2071-9140-2017-0-4-51-55
  19. GOST 25.601-80. Design calculation and strength testings. Methods of mechanical testing of polymeric composite materials. Test for tensile properties on plane specimens at normal, elevated and low temperatures. Moscow: Izdatel'stvo Standartov Publ., 1980. 14 p. (In Russ.)
  20. GOST 25.602-80. Design calculation and strength testings. Methods of mechanical testing of polymeric composite materials. Test for compression properties at normal, elevated and low temperatures. Moscow: Izdatel'stvo Standartov Publ., 1980. 18 p. (In Russ.)
  21. ASTM D3518 / D3518M-18. Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of a ±45 laminate. ASTM International, West Conshohocken, PA, 2018. doi: 10.1520/D3518_D3518M-18
  22. ASTM D4255 / D4255M-20. Standard test method for in-plane shear properties of polymer matrix composite materials by the rail shear method. ASTM International, West Conshohocken, PA, 2020. doi: 10.1520/D4255_D4255M-20
  23. ASTM D790-17. Standard test method for flexural propeties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International, West Conshohocken, PA, 2017. doi: 10.1520/D0790-17
  24. ASTM C365 / C365M-16. Standard test method for flatwise compressive properties of sandwich cores. ASTM International, West Conshohocken, PA, 2016. doi: 10.1520/C0365_C0365M-16
  25. ASTM C393 / C393M-20. Standard test method for core shear properties of sandwich constructions by beam flexure. ASTM International, West Conshohocken, PA, 2020. doi: 10.1520/C0393_C0393M-20
  26. ASTM C273 / C273M-20. Standard test method for shear properties of sandwich core materials. ASTM International, West Conshohocken, PA, 2020. doi: 10.1520/C0273_C0273M-20
  27. ASTM C297 / C297M-16. Standard test method for flatwise tensile strength of sandwich constructions. ASTM International, West Conshohocken, PA, 2016. doi: 10.1520/C0297_C0297M-16
  28. Malkov V.P., Ugodchikov A.G. Optimizatsiya uprugikh system [Optimization of elastic systems]. Moscow: Nauka Publ., 1981. 288 p.
  29. Esipov B.A. Metody optimizatsii i issledovanie operatsiy [Optimization methods and operations research]. Samara: Samara State Aerospace University Publ., 2007. 180 p.
  30. Timoshenko S.P., Voynovskiy-Kriger S. Plastiny i obolochki [Plates and shells]. Moscow: Nauka Publ., 1966. 636 p.
  31. Vaynberg D.V., Vaynberg E.D. Raschet plastin [Plating design]. Kiev: Budivel'nik Publ., 1970. 436 p.
  32. Zenkevich O. Metod konechnykh elementov v tekhnike [The finite element method in technology]. Moscow: Mir Publ., 1975. 271 p.
  33. Komarov V.A. Theoretical basis for design of load-bearing structures produced using additive technologies. Ontology of Designing. 2017. V. 7, no. 2 (24). P. 191-206. (In Russ.). doi: 10.18287/2223-9537-2017-7-2-191-206
  34. Barannikov A.A., Veshkin E.A., Postnov V.I., Strelnikov S.V. On the issue of production of the floor panels made of PСM for aircraft (review article). Izvestiya Samarskogo Nauchnogo Tsentra RAN. 2017. V. 19, no. 4 (2). P. 198-213. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies