Влияние атмосферного ветра на распространение радиоволн
- Авторы: Клюев Д.С.1, Волобуев А.Н.2, Адыширин-Заде К.А.2, Антипова Т.А.2, Александрова Н.Н.2
-
Учреждения:
- Поволжский государственный университет телекоммуникаций и информатики
- Самарский государственный медицинский университет
- Выпуск: Том 27, № 2 (2024)
- Страницы: 22-29
- Раздел: Статьи
- URL: https://journals.ssau.ru/pwp/article/view/27698
- DOI: https://doi.org/10.18469/1810-3189.2024.27.2.22-29
- ID: 27698
Цитировать
Аннотация
Обоснование. Показана необходимость исследования влияния физических характеристик атмосферы, в частности ветра, на атмосферную турбулентность и, следовательно, на характеристики радиосигнала.
Цель. Найдена зависимость временной спектральной функции потока энергии радиосигнала от скорости ветра в тропосфере в плоскости антенны.
Методы. Разработан метод перехода от декартовой системы координат в плоскости антенны к полярной системе координат волновых чисел. На основе этого метода прослежена связь между Фурье спектральной функцией корреляционного момента и представлением функции Бесселя. Для Фурье спектральной функции корреляционного момента использовано ранее полученное решение дифференциального уравнения для флуктуаций амплитуды эйконала электромагнитной волны в турбулентной атмосфере на фронте электромагнитной волны на координате приемной антенны. С помощью обратного преобразования Фурье найдена связь между временной спектральной функцией потока энергии радиосигнала и временной корреляционной функцией этого потока.
Результаты. На основе исследования временной корреляционной функции потока энергии радиосигнала выявлена ее связь с двухточечным корреляционным моментом, характеризующим флуктуации амплитуды эйконала радиосигнала. Для анализа влияния ветра применена модель турбулентности, отражающая инерционную область турбулентности, в которой поток энергии от более крупных турбулентных вихрей к более мелким вихрям определяется вязкой диссипацией самых мелких вихрей.
Заключение. Численный расчет показал, что ветер в плоскости антенны сдувает турбулентные вихри в этой плоскости, улучшая качество принимаемого радиосигнала.
Полный текст
Введение
Распространение радиосигнала от излучателя до приемной антенны зависит от физических характеристик атмосферы, через которую проходит радиосигнал. В частности, на распространение радиосигнала в турбулентной атмосфере оказывают влияние флуктуации атмосферного давления, температуры, влажности, время суток и т. д.
Перечисленные характеристики влияют на коэффициент преломления среды. Мы ограничимся анализом распространения радиоволн в тропосфере, рассматривая эту среду как неэлектропроводящую газовую смесь с относительной магнитной проницаемостью, равной единице, так что где – относительная диэлектрическая проницаемость среды. Особое внимание обратим на движение среды, создаваемое атмосферным ветром, для чего рассмотрим две координаты в тропосфере и рис. 1. На рис. 1 показано также направление радиосигнала вдоль координаты Х.
Рис. 1. Связь декартовой системы координат и системы координат волновых чисел в плоскости антенны
Fig. 1. Relationship between the Cartesian coordinate system and the wave number coordinate system in the antenna plane
Существует множество эмпирических формул, описывающих зависимость показателя преломления от характеристик атмосферы. Например, в [1] для сантиметровых радиоволн используется формула
(1)
где р – давление в миллибарах; Т – абсолютная температура; – удельная влажность (отношение плотности водяного пара к плотности влажного воздуха).
1. Временная корреляционная функция потока энергии радиосигнала
Поток энергии радиосигнала, рис. 1, падающий на антенну, можно найти по формуле [2]:
(2)
где – интенсивность радиосигнала, зависящая от координаты Х и времени вследствие турбулентности атмосферы, – постоянная составляющая интенсивности радиосигнала на координате где турбулентность отсутствует. Функция – характеризует флуктуации амплитуды эйконала радиосигнала [3] на координате Х за счет турбулентности атмосферы. Коэффициент 2 использован, т. к. интенсивность радиосигнала (или модуль вектора Пойнтинга) пропорциональна квадрату напряженностей электрического и магнитного полей в электромагнитной волне, – площадь круговой приемной антенны на координате рис. 1.
Ограничимся малыми флуктуациями, так что формула (2) приводится к виду
(3)
Временную корреляционную функцию потока энергии радиосигнала на координатах и запишем в виде
(4)
где – поток энергии радиосигнала (мощность радиосигнала) в невозмущенной атмосфере; – время распространения пульсаций радиосигнала за счет турбулентности (но не самого радиосигнала) на расстояние между координатами и равное времени распространения турбулентных пульсаций.
Рассмотрим спектральное представление корреляционного момента в виде интеграла Фурье:
(5)
где – волновой вектор электромагнитных флуктуаций (волновой вектор, характеризующий флуктуации амплитуды эйконала радиосигнала за счет турбулентности); – спектральная функция корреляционного момента
Подставляя (5) в (4), найдем Фурье-интеграл временной корреляционной функции потока энергии радиосигнала:
(6)
2. Переход от декартовой системы координат в плоскости антенны к полярной системе координат волновых чисел
Рассмотрим интеграл в плоскости антенны. При нахождении данного интеграла для упрощения обозначений заменим на
(7)
Величину в плоскости антенны можно представить в виде скалярного произведения
Для нахождения интеграла (7) в плоскости антенны при нужно рассматривать две взаимосвязанные системы координат: декартову систему координат и систему координат волновых чисел
Перейдем в (7) к полярным координатам в системе координат волновых чисел. Модуль дуги в плоскости антенны:
(8)
где обозначено – полярный радиус в системе координат волновых чисел (общий суммарный вектор в данном анализе участия не принимает); – дифференциал угловой полярной координаты в этой системе координат; – размерный коэффициент перехода от декартовых координат к системе координат волновых чисел В соответствии с рис. 1 связь дифференциалов в декартовой системе координат и полярной системе координат волновых чисел имеет вид и
Интеграл можно найти как интеграл по контуру окружности радиуса R в полярной системе координат волновых чисел. При этом
Перейдем от полярной системы координат волновых чисел к радиусу антенны R в декартовой системе координат. Учитывая в полярных координатах рис. 1, в соответствии с (8) имеем и
Таким образом, найдем:
(9)
где – единичный вектор в направлении координаты Х. Проведена замена пределов интегрирования от декартовых координат к полярной системе координат волновых чисел.
В формуле (9) используем известное представление функции Бесселя [4]:
(10)
Следовательно, для интеграла (9) при запишем:
(11)
Таким образом, двойной интеграл равен
(12)
Применяя обратное преобразование Фурье по времени к формуле (6) и возвращаясь к прежним обозначениям найдем временную спектральную функцию потока энергии радиосигнала:
(13)
null
где – частота турбулентных пульсаций, равная частоте пульсаций радиосигнала.
Функцию можно получить, используя решение дифференциального уравнения для флуктуаций амплитуды эйконала электромагнитной волны в турбулентной атмосфере [3]:
(14)
где – волновой вектор турбулентных пульсаций; – постоянный масштабный коэффициент пропорциональности между корреляционным моментом показателя преломления и корреляционным моментом флуктуаций амплитуды эйконала радиосигнала (где двухточечные корреляционные функции и и – координаты двухточечного источника воздействия турбулентности на электромагнитную волну; – спектральная функция пульсаций показателя преломления; k – волновой вектор электромагнитной волны; – волновой вектор, характеризующий флуктуации амплитуды эйконала радиосигнала.
Формула (14) записана на фронте электромагнитной волны при т. е. на координате приемной антенны. Используем также единую координату источника воздействия турбулентности на электромагнитную волну В этом случае формула (14) упрощается:
(15)
где – трехмерная спектральная функция поля флуктуаций показателя преломления
3. Влияние атмосферного ветра на пульсационные корреляционные соотношения параметров атмосферы
Введем в анализ процесса распространения радиосигнала атмосферный ветер и исследуем его влияние на параметры тропосферы, которые определяют влияние на этот процесс распространения.
Рассмотрим корреляционную функцию пульсаций показателей преломления при наличии ветра:
(16)
где V – компонента скорости ветра в плоскости, перпендикулярной координатам векторов и Для определенности анализа предполагаем, что координатные точки и лежат в плоскости антенны, рис. 1, так что Следовательно, вектор скорости V также лежит в плоскости антенны, рис. 1, т. е. ветер направлен перпендикулярно направлению распространения радиосигнала.
Чтобы ввести скорость воздуха в атмосфере в формулу (15) нужно учесть, что сдвиг в аргументе корреляционной функции (16) на соответствует умножению в спектральной функции на
Следовательно, формула (15) приобретает вид
(17)
Подставим формулу (17) в (13):
(18)
где интегрирование по идет по всей длине воздействия турбулентности на радиосигнал от 0 до L.
Проведем в формуле (18) интегрирование по используя формулу представления -функции Дирака [5]:
(19)
В результате имеем:
(20)
Далее, используя свойства -функции, исключим ее из выражения (20).
Заменим дифференциал где – угол между векторами и V, рис. 1, а – в данном случае единичный вектор в направлении вектора Следовательно, формула (20) преобразуется к виду
(21)
Используя свойство -функции
при и интегрируя по углу найдем:
(22)
где обозначено
Следовательно, формула (21) принимает вид
(23)
Так как в выражении (23) отсутствуют векторные сомножители, единичный вектор опускаем.
4. Модель турбулентности атмосферы
Дальнейшие преобразования (23) связаны с принятием определенной модели турбулентности.
Будем считать, что пульсации волнового числа радиосигнала пропорциональны турбулентным пульсациям Для простоты вычислений положим В этом случае спектральная функция пульсаций волнового числа электромагнитной волны Кроме того, как и в [2], принимаем где постоянная величина не зависит от волнового числа турбулентности Данный закон в основном отражает турбулентную инерционную область [3]. Турбулентность в этой области находится в статистическом равновесии: поток энергии от более крупных турбулентных вихрей к более мелким определяется вязкой диссипацией самых мелких вихрей.
В этом случае формула (23) преобразуется к виду
(24)
Последний интеграл в (24) легко вычисляется:
(25)
При вычислении интеграла (25) использована приближенная формула
Таким образом, формула (24) принимает вид
(26)
Аналогично [2], где использовалась относительная характеристика мерцания принимаемого радиосигнала, введем относительную спектральную функцию потока энергии радиосигнала:
(27)
где обозначено а также – постоянная величина. Принято также [1].
Как уже указывалось ранее, величина – частота турбулентных пульсаций, где – скорость турбулентных пульсаций; – энергия турбулентности, приходящаяся на единицу массы среды (атмосферы) [6]. Все координатные компоненты пульсационной скорости приняты одинаковыми. Таким образом, величина
где С – постоянная величина.
Чтобы не усложнять формулы, использовали колмогоровский закон для энергии изотропной турбулентности [3]. Подставляя выражение для в формулу (27), найдем:
(28)
где – постоянная величина
Рассмотрим реальную ситуацию, которая может возникнуть в тропосфере и стратосфере для средних и коротких волн [2]. Пусть длина радиоволны и масштаб турбулентных пульсации равны между собой м. Следовательно, волновые числа радиосигнала и турбулентных пульсаций В этом случае:
(29)
На рис. 2 показана зависимость относительной спектральной функции Для расчета принимались следующие значения постоянных: радиус антенны м. Размерность определяется тем, что относительная спектральная функция – безразмерная величина.
Как видно из графика, с увеличением скорости атмосферного ветра в плоскости антенны значение спектральной функции а следовательно, и влияние турбулентности на радиосигнал падает. Это связано с тем, что ветер сдувает турбулентные пульсации в плоскости антенны, уменьшая их влияние на принимаемый радиосигнал.
Рис. 2. Зависимость относительной корреляционной функции флуктуаций потока энергии радиосигнала от скорости ветра в атмосфере
Fig. 2. Dependence of the relative correlation function of fluctuations in the radio signal energy flux on wind speed in the atmosphere
Заключение
Исследование временной корреляционной функции потока энергии радиосигнала на координатах и рис. 1, позволило установить ее связь с двухточечным корреляционным моментом, характеризующим флуктуации амплитуды эйконала радиосигнала С помощью перехода от декартовой системы координат в плоскости антенны к полярной системе координат волновых чисел найдена связь между Фурье спектральной функцией корреляционного момента и представлением функции Бесселя. При этом для Фурье спектральной функции корреляционного момента использовано ранее полученное решение дифференциального уравнения для флуктуаций амплитуды эйконала электромагнитной волны в турбулентной атмосфере на фронте электромагнитной волны на координате приемной антенны.
Применяя обратное преобразование Фурье, прослежена связь между временной спектральной функции и временной корреляционной функцией потока энергии радиосигнала.
Путем исследования корреляционной функции пульсаций показателей преломления при наличии ветра выявлена зависимость временной спектральной функции потока энергии радиосигнала и скорости ветра в тропосфере в плоскости антенны.
Для Фурье спектральной функции пульсаций волнового числа электромагнитной волны (или трехмерной спектральной функции поля флуктуаций показателя преломления) использована модель турбулентности, отражающая инерционную область турбулентности, в которой поток энергии от более крупных турбулентных вихрей к более мелким определяется вязкой диссипацией самых мелких вихрей. Это позволило найти зависимость относительной спектральной функции потока энергии радиосигнала от скорости ветра, имеющего направление в плоскости антенны, т. е. поперек направления радиосигнала. Расчет показывает, что такой ветер сдувает турбулентные вихри в плоскости антенны, улучшая качество принимаемого радиосигнала.
Об авторах
Дмитрий Сергеевич Клюев
Поволжский государственный университет телекоммуникаций и информатики
Email: klyuevd@yandex.ru
ORCID iD: 0000-0002-9125-7076
доктор физико-математических наук, профессор, заведующий кафедрой радиоэлектронных систем
Россия, 443010, г. Самара, ул. Л. Толстого, 23Андрей Николаевич Волобуев
Самарский государственный медицинский университет
Автор, ответственный за переписку.
Email: volobuev47@yandex.ru
ORCID iD: 0000-0001-8624-6981
доктор технических наук, профессор кафедры медицинской физики, математики и информатики
Россия, 443099, г. Самара, ул. Чапаевская, 89Каира Алимовна Адыширин-Заде
Самарский государственный медицинский университет
Email: adysirinzade67@gmail.com
ORCID iD: 0000-0003-3641-3678
кандидат педагогических наук, доцент кафедры медицинской физики, математики и информатики
Россия, 443099, г. Самара, ул. Чапаевская, 89Татьяна Александровна Антипова
Самарский государственный медицинский университет
Email: antipovata81@gmail.com
ORCID iD: 0000-0001-5499-2170
кандидат физико-математических наук, доцент кафедры медицинской физики, математики и информатики
Россия, 443099, г. Самара, ул. Чапаевская, 89Наталья Николаевна Александрова
Самарский государственный медицинский университет
Email: grecova71@mail.ru
ORCID iD: 0000-0001-5958-3851
старший преподаватель кафедры медицинской физики, математики и информатики
Россия, 443099, г. Самара, ул. Чапаевская, 89Список литературы
- Монин А.С., Яглом А.М. Статистическая гидромеханика. Т. 2. М.: Наука, 1967. 720 с.
- Мерцание радиосигнала за счет турбулентности атмосферы / Д.С. Клюев [и др.] // Физика волновых процессов и радиотехнические системы. 2023. Т. 26, № 3. C. 11–19. DOI: https://doi.org/10.18469/1810-3189.2023.26.3.11-19
- Возникновение флуктуаций амплитуды и фазы радиосигнала в турбулентной атмосфере / Д.С. Клюев [и др.] // Физика волновых процессов и радиотехнические системы. 2023. Т. 26, № 1. C. 28–37. DOI: https://doi.org/10.18469/1810-3189.2023.26.1.28-37
- Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1970. С. 667.
- Левич В.Г. Курс теоретической физики. Т. 1. М.: Физматгиз, 1962. С. 681.
- Хинце И.О. Турбулентность. Ее механизм и теория. М.: Изд-во физмат. литературы, 1963. С. 89.