Некоторые особенности взаимодействия радиосигнала с турбулентной атмосферой

Обложка

Цитировать

Полный текст

Аннотация

На основе решения системы уравнений Максвелла для электромагнитного излучения в турбулентной атмосфере найдено дифференциальное эффективное сечение рассеяния этого излучения на турбулентности. Исследована зависимость сечения рассеяния от длины волны и угла рассеяния. Показано, что взаимодействие электромагнитного излучения и турбулентности атмосферы является взаимодействием детерминированного электромагнитного волнового процесса со стохастическим турбулентным волновым процессом. Отмечено, что волновой вектор рассеянного электромагнитного излучения пропорционален волновому вектору турбулентности.

Полный текст

Введение

Сверхвысокочастотное электромагнитное излучение (СВЧ-излучение) с длиной волны λ=1–10 см и ультравысокочастотное электромагнитное излучение (УВЧ-излучение) с длиной волны λ=10 см – 1 м широко используется в телевидении и радиолокации.

Эти виды электромагнитного излучения при отсутствии атмосферы в области гравитационного поля планеты распространяются прямолинейно, что ограничивает радиосвязь на этих волнах расстоянием 40–50 км. Более длинные волны дифрагируют на сферической поверхности Земли, что является одной из причин приема радиосигналов за пределами прямой видимости. Однако наличие атмосферы также ведет к возможности восприятия СВЧ- и УВЧ-излучения за пределами горизонта планеты. Это, в частности, связано с отражением излучения от ионизированного слоя в верхних слоях атмосферы, в тропосфере на высоте 10–12 км в умеренных широтах. Кроме того, эффект восприятия этих излучений за пределами горизонта связан также с турбулентностью атмосферы, в частности стратосферы на высоте 12–50 км с относительной диэлектрической проницаемостью ε1.

Процесс распространения электромагнитных волн в атмосфере ранее исследовался многими учеными, в частности [1–5].

Взаимодействие электромагнитного излучения и турбулентности атмосферы с физической точки зрения является взаимодействием детерминированного электромагнитного волнового процесса со стохастическим турбулентным волновым процессом.

Целью настоящей статьи является анализ влияния турбулентных пульсаций в атмосфере на электромагнитное излучение.

  1. Дифференциальное эффективное сечение рассеяния ультракоротковолнового электромагнитного излучения в турбулентной атмосфере

При анализе распространения ультракоротковолнового электромагнитного излучения в атмосфере в диапазоне λ=10 см – 1 м ее приближенно будем считать неэлектропроводящей средой с диэлектрической проницаемостью ε=n2 и магнитной проницаемостью μ=1, где n – показатель преломления вещества атмосферы.

Система уравнений Максвелла для электромагнитных волн, распространяющихся в атмосфере, имеет вид

rot E=1cHt, (1)

rot H=1cDt, (2)

div D=0, (3)

divH=0. (4)

В уравнениях (1)–(4) Е и Н – напряженности электрического и магнитного полей в электромагнитной волне, D – электрическая индукция в ней, t – время, с – скорость света в вакууме, примерно равная скорости света в атмосфере.

Материальное уравнение запишем в виде

D=ε.E (5)

Будем считать, что показатель преломления атмосферы незначительно отличается от единицы вследствие флуктуации ее параметров: давления, температуры, влажности и т. д. Поэтому полагаем

n=1+n/, (6)

где n/ – случайные пульсации показателя преломления. Величина n/ имеет значение порядка 108106 [6].

Учитывая ε=n2, а также n/1, находим

ε=1+2n/+n/21+2n/=1+ε/. (7)

Пульсации диэлектрической проницаемости ε/=2n/, несмотря на их малую величину, приводят к рассеянию электромагнитных волн в атмосфере.

Учитывая синусоидально-колебательный характер электромагнитных волн, уравнения (1) и (2) можно записать в виде, исключающем временные производные напряженностей полей в волне:

rot E=ikH, (8)

rot H=ikD. (9)

Плотность потока энергии электромагнитных колебаний – вектор Пойнтинга [7] имеет вид

S=c4πE×H. (10)

Из уравнения (8) найдем напряженность магнитного поля

H=ikrot E. (11)

Подставив (11) в (12), найдем зависимость вектора Пойнтинга только от напряженности электрического поля в волне:

S=c4πE×H=ci4πkE×rot E. (12)

Пусть на некоторый условно выделенный объем V, рис. 1, в котором имеются турбулентные пульсации атмосферы, падает плоская электромагнитная волна с напряженностью электрического поля в волне:

E0=pA0eikX, (13)

где Х – координата распространения падающей волны, p – единичный вектор в плоскости колебаний вектора  перпендикулярный направлению распространения волны, т. е. волновому вектору k, А0 – амплитуда волны, kX – фаза волны. Временную составляющую фазы не учитываем, т. к. используются уравнения Максвелла в виде (8) и (9).

 

Рис. 1. Рассеяние плоской электромагнитной волны (вектора Пойнтинга) объемом V с турбулентными пульсациями

Fig. 1. Scattering of a plane electromagnetic wave (Poynting vector) by volume V with turbulent pulsations

 

Соответствующая этой волне плотность потока энергии, согласно формуле (12), равна

S0(X)=ci4πk(E0×E0X)= (14)

=ci4πkpA0eikX×pA0eikXik=cA024πkkei2kX,

где учтено p2=1.

Учитывая, что вектор k направлен вдоль координаты Х, находим среднее по длине волны (λ=2π/k) значение вектора Пойнтинга:

S0=cA024πkkk2π02πkReei2kXdX= (15)

=cA024πkkk2π02πkcos2kXdX=cA028πkk.

Напряженность электрического поля в объеме V можно представить в виде

E=E0+E/, (16)

где E/ – соответствует рассеянным электромагнитным волнам.

Исключим из системы (8), (9) напряженность магнитного поля, находя ротор уравнения (8):

rot rot E=ik rot H=k2D. (17)

Следовательно, k2(D0+D/)=rot rot (E0+E/), где D0=ε0E0=E0, т. к. ε0=1 – диэлектрическая проницаемость невозмущенной атмосферы, D/ – турбулентные пульсации электрической индукции. Учитывая, согласно (17), k2D0=rot rot E 0, находим уравнение для пульсационных электрических характеристик:

k2D/=rot ro tE /, (18)

В соответствии с (5) и (7) имеем D=(1+2n/E) или D0+D/=(1+2n/)(E0+E/).

Следовательно, D0+D/=(E0+2n/E0+E/+2n/E/).

Учитывая D0=E0 и полагая 2n/E0+E/2n/E/, имеем

D/=E/+2n/E0. (19)

Исключая из системы уравнений (18), (19) величину E/, находим k2D/=rot rot (D/2n/E0). Учитывая формулу векторного анализа rot rotD/=grad (div D/)ΔD/ и формулу (3) в виде divD /=0, имеем

(Δ+k2)D/=rot rot (2n/E0). (20)

Решение волнового уравнения (20) со случайной правой частью с использованием формулы (13) имеет вид

D/(X)= (21)

=14πrotrotV2n/X1E0X1eikXX1XX1dX1=

=A02πrotrotρVn/X1ei1+ikX1XX1XX1dX1.

Пусть q=X/X – единичный вектор направления исследования, рис. 1. Полагаем, что вне объема V пульсации отсутствуют, поэтому n/=0, ε=1 и D=E а также (5), (6). Величина x1 лежит внутри объема V, а Х достаточно далеко от этого объема, поэтому в знаменателе (21) можно величину XX1 заменить XX1X – расстоянием до точки наблюдения. Кроме того, полагая XX1=XqX1=XqX1, и eikX1+ikXX1=eikX1+ikXkX1=eikXeikX1,

запишем (21) в виде

E/(X)= (22)

=A02πrotrotρeikXXVn/X1eikkqX1dX1.

Учитываем, что rot(rot)=×(×)=q×(q×)2X2,

а также

rotrotρeikXX=q×q×ρ2X2eikXX

k2eikXXq×p×q.

В связи с тем что длина электромагнитной волны мала по сравнению с расстоянием до точки наблюдения Xλ при нахождении производной знаменатель считаем приблизительно постоянным, т. е. фактически используем плоскую геометрию. В результате получаем

E/(X)=k2A0eik|X|2π|X|G(q×p×q), (23)

где

G=Vn/X1eikkqX1dX1– параметр, характеризующий турбулентные пульсации атмосферы.

Вектор q×p×q=sinα, где α – угол между векторами р и q, рис. 1. Вектор q×p×q перпендикулярен вектору q.

Найдем плотность потока рассеянной электромагнитной энергии по формуле (12):

S/=ci4πk(E/×rotE/)= (24)

=ci4πkE/×XE/=ci8πkqXE/2=

=ci8πkqk4A024π2G2sinα2Xe2ikXX2

ci8πkqk4A024π2X2G2sinα22ike2ikX=

=c8πqk4A024π2X2G2sinα22e2ikX=

=ck4A02sinα232π3X2G2q.

При выводе учтено среднее по длине волны значение Re(e2ikX)=1/2.

Дифференциальное эффективное сечение процесса рассеяния электромагнитных волн объемом V равно

dσ=dPS0. (25)

Поток энергии (мощность) dP электромагнитных волн, рассеянных в телесный угол dΩ в направлении q, учитывая (24), равен

dP=S/X2dΩ=ck4A02sinα232π3G2dΩ. (26)

Подставляя в (26) формулу (15), находим

dσ=k4sinα24π2G2dΩ=k4sin2α4π2G2dΩ. (27)

Таким образом, дифференциальное эффективное сечение процесса рассеяния электромагнитных волн турбулентными пульсациями атмосферы подчиняется закону четвертой степени Рэлея:

dσ~k4=16π4λ4, (28)

На рис. 2 показано распределение дифференциального эффективного сечения в зависимости от угла α

 

Рис. 2. Схема приема электромагнитных волн, рассеянных на турбулентных пульсациях атмосферы, 1 – излучающая антенна, 2 – приемная антенна, 3 – угловое рассеяние волн

Fig. 2. Scheme for receiving electromagnetic waves scattered by turbulent pulsations of the atmosphere, 1 – emitting antenna, 2 – receiving antenna, 3 – angular wave scattering

 

  1. Влияние турбулентных характеристик атмосферы на рассеяние электромагнитного излучения

Исследуем более подробно параметр G=Vn/X1eikkqX1dX1, характеризующий турбулизацию атмосферы. Волновой вектор kkq представляет собой разность между волновыми векторами падающей и рассеянной волн, рис. 2.

Для упрощения анализа турбулентность будем считать однородной и изотропной, т. е. она имеет количественно везде одну и ту же структуру и ее статистические характеристики не зависят от направления.

Двухточечную корреляционную функцию BnnX1X2=n/X1n/X2 (угловые скобки, как обычно, означают пространственное осреднение) с помощью Фурье-преобразования запишем через Фурье-спектр турбулентности Fnn(ζ):

BnnX1X2= (29)

=expiζX1X2Fnnζdζ.

В данном случае ζ является волновым вектором турбулентного спектра. При взаимодействии электромагнитной волны и турбулентности происходит взаимодействие двух волновых процессов: детерминированного электромагнитного волнового процесса и стохастического турбулентного волнового процесса. Волновой вектор, представляющий разность между волновыми векторами падающей и рассеянной электромагнитных волн k-kq полагаем пропорциональным волновому вектору турбулентного спектра  рис. 2. Это будет обосновано далее.

Таким образом, средний квадрат параметра турбулентности G равен

G2=VVBnnX1X2× (30)

×expiζX1X2dX1dX2.

Постоянный коэффициент пропорциональности между волновыми векторами k-kq и ζ для дальнейших преобразований несущественен, и его полагаем равным единице. В дальнейшем его численное значение уточним.

С другой стороны, используя Фурье-спектр, имеем

G2=8π3V0ζ18π3VexpiζdFnnζdζ (31)

8π3V0ζFnnζdζ18π3Vexpiζrdr,

где r=X1-X2. Весовая функция fζ=18π3Vexpiζrdr, интеграл от которой по всему волновому пространству равен единице [6]. Поэтому функция fζ изменяется незначительно и ее можно вынести за знак интеграла. Величина 0ζFnnζdζ~ζ52 в достаточно большом диапазоне модулей волновых векторов [8]. Этому же закону подчиняется средний квадрат параметра турбулентности G2ζ. Сам параметр турбулентности подчиняется закону, близкому к линейному Gζ~ζ54, а спектральная функция турбулентности приблизительно подчиняется закону ddςζ52~ζ32.

Пусть θ – угол рассеяния между волновым вектором k падающей электромагнитной волны и направлением q рассеянной волны, рис. 2. Тогда из равнобедренного треугольника kkq=2ksinθ2.

Учитывая k=2π/λ, находим величину

d=λ2sinθ2=2πkkq=2πδζ, (32)

где δ=kkq/ζ – параметр, показывающий во сколько раз электромагнитный волновой вектор k-kq больше турбулентного волнового вектора ζ.

Формула (32) называется уравнением Вульфа – Брэгга для пространственной дифракционной решетки. Величина d – аналог периода решетки, т. е. расстояние между структурами, рассеивающими электромагнитные волны. Следовательно, турбулентность атмосферы можно с некоторым приближением представить в виде пространственной дифракционной решетки.

Можно уподобить величину d масштабу турбулентности. В изотропной турбулентности d0,75/ζ [8]. Сравнение (32) с этой формулой подтверждает пропорциональность волнового вектора k-kq т. е. разности падающего и рассеянного турбулентностью электромагнитного излучения и волнового вектора турбулентного спектра ζ. Кроме того, можно оценить коэффициент пропорциональности δ между этими векторами 2π/δ=0,75 и δ8,37, так, что kkq8,37ζ.

Заключение

Рассеяние ультракоротковолнового электромагнитного излучения на турбулентности атмосферы приводит к различным эффектам, в том числе влияет на дальнюю радиосвязь на ультракоротких волнах. Дифференциальное эффективное сечение рассеяния радиоизлучения на турбулентных флуктуациях показателя преломления относительно длины волны подчиняется закону Рэлея, а геометрически – квадратичному синусоидальному закону с максимумом, перпендикулярным первоначальному направлению излучения.

Показано, что турбулентность атмосферы при взаимодействии с радиоволной можно представить в виде пространственной дифракционной решетки. Найдена зависимость эффективного периода этой решетки от параметров электромагнитной волны и турбулентности.

С физической точки зрения взаимодействие электромагнитного излучения и турбулентности атмосферы является взаимодействием детерминированного электромагнитного волнового процесса со стохастическим турбулентным волновым процессом. При этом волновой вектор, характеризующий разность падающего и рассеянного турбулентностью электромагнитного излучения, пропорционален волновому вектору турбулентного спектра. Длина волны рассеянного электромагнитного излучения примерно на порядок меньше масштаба турбулентности.

×

Об авторах

Дмитрий Сергеевич Клюев

Поволжский государственный университет телекоммуникаций и информатики

Email: klyuevd@yandex.ru
ORCID iD: 0000-0002-9125-7076

доктор физико-математических наук, доцент, заведующий кафедрой радиоэлектронных систем

Россия, 443010, Самара, ул. Л. Толстого, 23

Андрей Николаевич Волобуев

Самарский государственный медицинский университет

Email: volobuev47@yandex.ru
ORCID iD: 0000-0001-8624-6981

доктор технических наук, профессор кафедры медицинской физики, математики и информатики

Россия, 443099, Самара, ул. Чапаевская, 89

Сергей Викторович Краснов

Самарский государственный медицинский университет

Email: s.v.krasnov@samsmu.ru

доктор технических наук, профессор, заведующий кафедрой медицинской физики, математики и информатики

Россия, 443099, Самара, ул. Чапаевская, 89

Каира Алимовна Адыширин-Заде

Самарский государственный медицинский университет

Email: adysirinzade67@gmail.com
ORCID iD: 0000-0003-3641-3678

кандидат педагогических наук, доцент кафедры медицинской физики, математики и информатики

Россия, 443099, Самара, ул. Чапаевская, 89

Татьяна Александровна Антипова

Самарский государственный медицинский университет

Email: antipovata81@gmail.com
ORCID iD: 0000-0001-5499-2170

кандидат физико-математических наук, доцент кафедры медицинской физики, математики и информатики

Россия, 443099, Самара, ул. Чапаевская, 89

Наталья Николаевна Александрова

Самарский государственный медицинский университет

Автор, ответственный за переписку.
Email: grecova71@mail.ru
ORCID iD: 0000-0001-5958-3851

старший преподаватель кафедры медицинской физики, математики и информатики

Россия, 443099, Самара, ул. Чапаевская, 89

Список литературы

  1. Татарский В.И., Голицын Г.С. О рассеянии электромагнитных волн турбулентными неоднородностями тропосферы // Атмосферная турбулентность. Труды Ин-та физики атмосферы АН СССР. 1962. № 4. С. 147–202.
  2. Татарский В.И. Распространение волн в турбулентной атмосфере. М.: Наука, 1967. 548 с.
  3. Чернов Л.А. Распространение волн в среде со случайными неоднородностями. М.: АН СССР, 1958. 159 с.
  4. Booker H.G., Gordon W.E. A theory of radio scattering in troposphere // Proceedings of the IRE. 1950. Vol. 38, no. 4. P. 401–412. DOI: https://doi.org/10.1109/JRPROC.1950.231435
  5. Villars F., Weisskopf V.F. On the scattering of radio waves by turbulent fluctuations of the atmosphere // Proceedings of the IRE. 1955. Vol. 43, no. 10. P. 1232–1239. DOI: https://doi.org/10.1109/JRPROC.1955.277935
  6. Монин А.С., Яглом А.М. Статистическая гидромеханика. Ч. 2. М.: Наука, 1967. С. 548, 565.
  7. Крауфорд Ф.С. Волны; пер. с англ. М.: Наука, 1976. С. 323.
  8. Хинце И.О. Турбулентность. Ее механизм и теория. М.: Изд-во физмат. литературы, 1963. С. 226, 279.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Рассеяние плоской электромагнитной волны (вектора Пойнтинга) объемом V с турбулентными пульсациями

Скачать (39KB)
3. Рис. 2. Схема приема электромагнитных волн, рассеянных на турбулентных пульсациях атмосферы, 1 – излучающая антенна, 2 – приемная антенна, 3 – угловое рассеяние волн

Скачать (48KB)

© Клюев Д.С., Волобуев А.Н., Краснов С.В., Адыширин-Заде К.А., Антипова Т.А., Александрова Н.Н., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ФС 77 - 68199 от 27.12.2016.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах