Расчет двухкаскадной длиннопериодной волоконной решетки показателя преломления

Обложка

Цитировать

Полный текст

Аннотация

Предложен метод расчета спектральных характеристик каскадных длиннопериодных волоконных решеток показателя преломления сердцевины на основе метода частичных областей и декомпозиции. Согласно методу, структура представляется в виде каскадного соединения базовых неоднородностей, каждое из которых представляет собой стык нескольких волоконных световодов с разными диэлектрическими и геометрическими параметрами. Апробация метода осуществлялась сведением структуры к единичной длиннопериодной волоконной решетки и сравнением результатов с результатами, полученными с помощью других методов расчета. Результаты совпали с графической точностью. Преимуществом метода является возможность теоретически исследовать влияние на спектральные свойства структуры от диэлектрических и геометрических параметров, а также значительно сэкономить временные ресурсы. Приведены спектры пропускания решеток с различными параметрами периода T, длины решеток L и расстояния между решетками Lв.

Полный текст

Введение

За последние несколько десятилетий волоконные структуры со вставками специальных волокон благодаря их особым характеристикам получили широкое распространение в волоконно-оптической технике [1]. Среди них наиболее применимыми являются длиннопериодные волоконные решетки (ДПВР), представляющие собой отрезки одномодовых волоконных световодов (ВС) с периодически изменяющимся показателем преломления (ПП) сердцевины с периодом порядка 100–500 мкм. ДПВР находят применение в системах измерения различных физических величин из-за своих уникальных характеристик, таких как возможность дистанционного измерения, высокой чувствительности, небольших габаритных размеров, высокой точности, способности одновременного измерения нескольких параметров, высокого быстродействия и устойчивости к электромагнитным помехам [2; 3].

Для теоретического исследования данных структур необходим высокоэффективный и теоретически обоснованный метод, который позволит произвести расчёт их спектральных характеристик.

Для расчёта ДПВР в настоящее время применяют метод, основанный на решении системы уравнений связанных волн [4]. Однако данный метод применим только для расчета однородных решёток с достаточно большим числом периодов. Неоднородные (с изменяющимися по длине параметрами) ДПВР могут быть строго рассчитаны с использованием метода частичных областей [5]. В основе которого лежит решение задачи дифракции основной волны ВС на неоднородностях показателя преломления или формы сердцевины волокна. Данная математическая модель характеризуется большой размерностью, которая при решении задач анализа и синтеза приводит к сложностям в вычислении. Для решения этой проблемы возможно использование метода декомпозиции, т. е. разбиения исходной сложной системы на подсистемы меньшей размерности [5; 6]. Таким образом, в основе предлагаемой в настоящей статье методики расчёта ДПВР лежит решение задачи дифракции основной волны ВС на неоднородностях в виде ступенчатого изменения показателя преломления сердцевины. Целью данной работы является построение алгоритма и расчет каскадных ДПВР.

  1. Электродинамическая модель

Расчет каскадных ДПВР строится на основе строгой электродинамической модели базовой неоднородности трехслойного волоконного световода. Схематично структура изображена на рис. 1.

 

Рис. 1. Базовая неоднородность

Fig. 1. Basic heterogeneity

 

Рассмотрим задачу дифракции основной волны HE11 в данной структуре. Для упрощения расчетов будем считать, что каждый стык волокон есть соединение регулярных отрезков волноводов, параметры которых постоянны. Пусть на структуру слева падает основная волна единичной амплитуды HE11. В каждом отрезке волновода поле представляет собой набор отраженных и прошедших волн.

Поле дифракции в волноводе I является суперпозицией падающей волны HE11 и бесконечного количества отраженных собственных волн:

E(I)H(I)=E1(I)H1(I)eiβ1(I)z+n=1CnEn(I)Hn(I)eiβn(I)z, (1)

поле в волноводе  i– суперпозиция бесконечного набора прошедших и отраженных собственных волн:

E(i)H(i)=n=1Dn(i)En(i)Hn(i)eiβn(i)z++n=1Fn(i)En(i)Hn(i)eiβn(i)z, (2)

в волноводе II поле представляется в виде бесконечного набора прошедших собственных волн:

E(II)H(II)=n=1BnEn(II)Hn(II)eiβn(II)z, (3)

где Cn, Dn(i), Fn(i), Bn – постоянные неизвестные коэффициенты; E1(I), H1(I), En(I), Hn(I), E±n(i), H±n(i), En(II), Hn(II) – векторные функции, описывающие зависимость поля от поперечных координат; β1(I), βn(I), βn(i), βm(II) – продольные постоянные распространения волн соответствующих волноводов.

Условия непрерывности тангенциальных составляющих электрических и магнитных полей на границе волноводов I и i запишутся в виде:

n=1NDn(i)(Ern(i)r0+Eφn(i)φ0)eiβn(i)ΔLi (4)

n=1NFn(i)(Ern(i)r0+Eφn(i)φ0)eiβn(i)ΔLiSi=

=n=1NDn(i+1)(Ern(i+1)r0+Eφn(i+1)φ0)

n=1NFn(i+1)(Ern(i+1)r0+Eφn(i+1)φ0)Si,

n=1NDn(i)(Hrn(i)r0+Hφn(i)φ0)eiβn(i)ΔLi+ (5)

+n=1NFn(i)(Hrn(i)r0+Hφn(i)φ0)eiβn(i)ΔLiSi=

=n=1NDn(i+1)(Hrn(i+1)r0+Hφn(i+1)φ0)+

+n=1NFn(i+1)(Hrn(i+1)r0+Hφn(i+1)φ0)Si,

где

i=0,1,2,...,K1;

Dn(0)=1,  при n=1,0,  при n1;

Fn(0)=Cn.

На границе волноводов i и II граничные условия записываются в виде:

n=1NDn(i)(Ern(i)r0+Eφn(i)φ0)eiβn(i)ΔLi (6)

n=1NFn(i)(Ern(i)r0+Eφn(i)φ0)eiβn(i)ΔLiSк=

=m=1MBm(II)(Erm(II)r0+Eφm(II)φ0)Sк,

n=1NDn(i)(Hrn(i)r0+Hφn(i)φ0)eiβn(i)ΔLi+ (7)

+n=1NFn(i)(Hrn(i)r0+Hφn(i)φ0)eiβn(i)ΔLiSк=

=m=1MBm(II)(Hrm(i+1)r0+Hφm(i+1)φ0)Sк,

где M, N – число учитываемых волн; r0, φ0 – единичные векторы цилиндрической системы координат; ΔLi – значение продольной координаты, соответствующее границе Si двух волноводов.

В случае дифракции основной волны HE11 на осесимметричном переходе будут возбуждаться только волны с одной вариацией электромагнитного поля по угловой координате. Поэтому при записи граничных условий (4)–(7) достаточно учесть волны с азимутальным индексом, равным единице.

Векторно умножаем уравнение (4) на (Hrq(i)r0+Hφq(i)φ0), а (5) – на (Erq(i+1)r0+Eφq(i+1)φ0) и интегрируем получившиеся выражения по поперечному сечению соответствующего волновода Si.

Аналогичные операции производим с уравнениями (6)–(7). Используя энергетическую ортогональность собственных волн, получаем систему линейных неоднородных уравнений относительно неизвестных амплитудных коэффициентов волн в матричной записи:

ECW(0)D(1)W(0)Ψ(1)F(1)=I; (8)

W(0)TCED(1)+Ψ(1)F(1)=I~;

Ψ(i)D(i)+EF(i)W(i)D(i+1)W(i)Ψ(i+1)F(i+1)=0;W(i)TΨ(i)D(i)W(i)TF(i)ED(i+1)+Ψ(i+1)F(i+1)=0;

Ψ(K)D(K)+EF(K)W(K)Ψ(II)B=0;W(K)TΨ(K)D(K)W(K)TF(K)Ψ'(II)B=0,

где E – единичная матрица с элементами Eq,n=δq,n (δq,n – символ Кронекера); C, D(i), F(i), D – векторы-столбцы неизвестных амплитудных коэффициентов; I – вектор столбец с элементами Iq=δq,0;

I~ – вектор-столбец с элементами

I~q=S(Erq(1)Hφ0(0)Eφq(1)Hr0(0))ds;

Wi – матрицы с элементами

Wq,n(i)=S(Erq(i+1)Hφn(i)Eφq(i+1)Hrn(i))ds;

WT – транспонированные матрицы; Ψ(i) – диагональная матрица, элементы которой Ψn,n(i)= eiβn(i)ΔLi учитывают набег фазы волны с номером n. Здесь всюду i=0,1,...,K, n=1,2,...,N, 1,2,...,N, m=1,2,...,M.

Систему (8) можно также записать в виде матричного уравнения, которое позволяет найти амплитудные коэффициенты Cn, Bm, Dn(i)и Fn(i) волн в волноводах I, II и i-й области исследуемой структуры, изображенной на рис. 1. Таким образом матричное уравнение запишется в виде:

SX=Γ, (9)

где

X=CD(1)F(1)D(i)F(i)B, Γ=II~0000

– вектор-столбцы;

S=EW(0)W(0)Ψ(1)0W(0)TEΨ(1)00...Ψ(i)E0...W(i)TΨ(i)W(i)T000...000...

...000...000W(i)W(i)Ψ(i+1)...0EΨ(i+1)...00Ψ(K)EW(K)0W(K)TΨ(K)W(K)TE.

При расчете структур с большим количеством неоднородностей длиннопериодной волоконной решетки, а также их каскадов, предлагаемый метод частичных областей приводит к вычислению матриц большой размерности и как следствие к большим вычислительным затратам. Выходом из данной ситуации является применение метода частичных областей в сочетании с методом декомпозиции [7]. В этом случае расчет базовой неоднородности производится методом частичных областей, а затем с помощью метода декомпозиции находятся характеристики всей структуры [8; 9].

  1. Реализация метода на примере расчета каскадной ДПВР

На основе предложенной электродинамической модели был произведен расчет структуры с двухкаскадной ДПВР, изображенной на рис. 2. Для апробации алгоритма расчета исследуемая структура была сведена к ДПВР с параметрами предложенными в [5]. Результаты расчета представленные на рис. 3 и 4 совпали с графической точностью с результатами представленными в [5]. На рис. 3 показан спектр пропускания, а на рис. 4 – спектральная зависимость модуля коэффициента возбуждения волны  HE19.

 

Рис. 2. Двухкаскадная ДПВР

Fig. 2. Two-stage DPVR

 

Рис. 3. Спектр пропускания ДПВР с периодом T = 122 мкм, L = 1,9886 см

Fig. 3. Transmission spectrum of the DPVR with a period T = 122 microns, L = 1,9886 cm

 

Рис. 4. Спектральная зависимость модуля коэффициента возбуждения волны HE19 ДПВР с периодом T = 122 мкм, L=1,9886 см

Fig. 4. Spectral dependence of the modulus of the excitation coefficient of the HE19 wave of the DPVR with a period T = 122 microns, L = 1,9886 cm

 

На рис. 5–7 приведен спектр пропускания каскадной решетки, спектральная зависимость модуля коэффициента возбуждения волны HE15 и спектральная зависимость модуля коэффициента возбуждения волны HE18 соответственно при следующих параметрах: период решетки составил T=750 мкм, длина обеих ДПВР по L=3,1125 см, расстояние между решетками (длина вставки одномодового волокна) составила Lв=18,746 см. Радиус сердцевины 1,455 мкм, а оболочки – 62,5 мкм. Количество учитываемых волн бралось равным 10.

 

Рис. 5. Спектр пропускания каскадной решетки с параметрами T = 750 мкм, L = 3,1125 см, Lв = 18,746 см

Fig. 5. Transmission spectrum of the cascade array with parameters T = 750 microns, L = 3,1125 cm, Lv = 18,746 cm

 

Рис.6. Спектральная зависимость модуля коэффициента возбуждения волны HE15 каскадной решетки с параметрами T = 750 мкм, L = 3,1125 см, Lв = 18,746 см

Fig.6. Spectral dependence of the HE15 wave excitation coefficient modulus of a cascade array with parameters T = 750 microns, L = 3,1125 cm, Lv = 18,746 cm

 

Рис. 7. Спектральная зависимость модуля коэффициента возбуждения волны HE18 каскадной решетки с параметрами T = 750 мкм, L = 3,1125 см, Lв = 18,746 см

Fig. 7. Spectral dependence of the modulus of the excitation coefficient of a wave of AT least 18 cascade array with parameters T = 750 microns, L = 3,1125 cm, Lv = 18,746 cm

 

Из графиков спектра пропускания и спектральных зависимостей модулей коэффициентов возбуждения высших типов волн HE15и HE18 следует, что в диапазоне длин волн от 1470 нм до 1530 нм коэффициент прохождения близок к 1, но на длине волны 1485 нм энергия основной волны HE11 переходит в энергию оболочечной моды HE18 (показано на рис. 7), а на длинах волн 1487 нм и 1489 нм переходит в энергию оболочечной моды HE15 (показано на рис. 6). Спектр пропускания качественно совпадает с результатами из [10].

Спектр пропускания каскадной ДПВР, со следующими параметрами: период T=752 мкм, длина решеток L=4,1736 см, расстояние между решетками Lв=18,756 см, радиус сердцевины 1,455 мкм, оболочки – 62,5 мкм представлен на рис. 8. Количество учитываемых волн бралось равным 10.

 

Рис. 8. Спектр пропускания каскадной решетки с параметрами: T = 752 мкм, L = 4,1736 см, Lв = 18,756 см

Fig. 8. Transmission spectrum of the cascade array with parameters: T = 752 microns, L = 4,1736 cm, Lv = 18,756 cm

 

Нетрудно видеть, что при данных параметрах коэффициент прохождения по основной волне HE11 на длинах волн 1485 нм и 1490 нм стал практически равен нулю, но на длине волны 1487 нм увеличился до 0,67.

На рис. 9 представлен спектр пропускания ДПВР, рассчитанной при следующих параметрах: период решетки T=750 мкм, длина обеих ДПВР L=2,6625 см, расстояние между решетками составило Lв=18,75 см, радиус сердцевины 1,455 мкм, а оболочки – 62,5 мкм. Количество учитываемых волн бралось равным 10. А также на рис. 10 приведен спектр пропускания ДПВР с аналогичными параметрами периода решетки и длины обеих ДПВР, но с другим расстоянием между решетками Lв=18,747 см. Радиус сердцевины и оболочки, а также количество учитываемых волн бралось такими же, как и в предыдущих случаях.

 

Рис. 9. Спектр пропускания каскадной решетки с параметрами: T = 750 мкм, L = 2,6625 см, Lв = 18,75 см

Fig. 9. Transmission spectrum of the cascade array with parameters: T = 750 microns, L = 2,6625 cm, Lv = 18,75 cm

 

Рис. 10. Спектр пропускания каскадной решетки с параметрами: T = 750 мкм, L = 2,6625 см, Lв = 18,747 см

Fig. 10. Transmission spectrum of cascade grating with parameters: T = 750 microns, L = 2,6625 cm, Lv = 18,747 cm

 

Из приведённых графиков видно, что при уменьшении расстояния между решетками спектр пропускания смещается в коротковолновую область.

Заключение

Предложен метод расчета спектральных характеристик каскадных длиннопериодных волоконных решеток показателя преломления сердцевины. Согласно алгоритму, структура представляется в виде каскадного соединения базовых неоднородностей, каждое из которых рассчитывается методом частичных областей. Преимуществом метода является возможность теоретически исследовать влияние на спектральные свойства структуры от диэлектрических и геометрических параметров, а также значительно сэкономить временные ресурсы. Приведены спектры пропускания решеток с различными параметрами периода T, длины решеток L и расстояния между решетками Lв.

×

Об авторах

Роман Валерьевич Бударагин

Нижегородский государственный технический университет имени Р.Е. Алексеева

Email: rbudaragin@mail.ru

доктор технических наук, заведующий кафедрой общей и ядерной физики

Россия, 603950, г. Нижний Новгород, ул. Минина, 24

Михаил Игоревич Курзенков

Нижегородский государственный технический университет имени Р.Е. Алексеева

Email: cheetah10@mail.ru

аспирант кафедры общей и ядерной физики

Россия, 603950, г. Нижний Новгород, ул. Минина, 24

Александр Алексеевич Радионов

Нижегородский государственный технический университет имени Р.Е. Алексеева

Email: radionow.aleck@yandex.ru

доктор технических наук, профессор кафедры общей и ядерной физики

Россия, 603950, г. Нижний Новгород, ул. Минина, 24

Зинаида Юрьевна Саласенко

Нижегородский государственный технический университет имени Р.Е. Алексеева

Автор, ответственный за переписку.
Email: zina.salasenko@mail.ru
ORCID iD: 0000-0003-3609-2632

магистрант кафедры физики и техники оптической связи

Россия, 603950, г. Нижний Новгород, ул. Минина, 24

Список литературы

  1. Волоконные решетки показателя преломления и их применения / С.А. Васильев [и др.] // Квантовая электроника. 2005. Т. 35, № 12. С. 1085–1103. URL: http://mi.mathnet.ru/qe13041
  2. Исследование спектров пропускания длиннопериодных волоконных решеток под воздействием высоких температур / А.В. Беринцев [и др.] // Известия Самарского научного центра Российской академии наук. Физика и электроника. 2012. Т. 14, № 4. С. 1081–1085.
  3. Полностью волоконный высокочувствительный датчик изгиба для атомной промышленности / О.В. Бутов [и др.] // Фотон-экспресс. 2019. № 6. С. 26–27.
  4. Long-period fiber gratings as band rejection filters / A.M. Vengsarkar [et al.] // Journal of Lightwave Technology. 1996. Vol. 14, no. 1. P. 58–65. DOI: https://doi.org/10.1109/50.476137
  5. Бударагин Р.В., Раевский А.С. Электродинамический расчет длинопериодных волоконных решеток // Физика волновых процессов и радиотехнические системы. 2012. Т. 15, № 2. C. 42–48.
  6. Ибрагимов Д.Н., Турчак Е.Е. Об одном методе декомпозиции в задаче быстродействия для линейной дискретной системы с ограниченным управлением // Моделирование и анализ данных. 2019. Т. 9, № 4. С. 157–161. DOI: https://doi.org/10.17759/mda.2019090413
  7. Никольский В.В., Никольская Т.И. Декомпозиционный подход к задачам электродинамики. М.: Наука, 1983. 304 с.
  8. Бударагин Р.В., Саласенко З.Ю., Курзенков М.И. Электродинамический расчет базовых неоднородностей на основе волоконных световодов при проектировании датчиков для атомной отрасли // Высокие технологии атомной отрасли. Молодежь в инновационном процессе: сб. материалов XV научно-технической конференции молодых специалистов Росатома. Саров: ФГУП «РФЯЦ-ВНИИЭФ», 2021. С. 178–182.
  9. Бударагин Р.В. О методике расчета задачи дифракция на диэлектрической неоднородности в экранированном волноводе методом частичных областей // Антенны. 2016. № 2 (227). С. 83–90.
  10. Перестраиваемый многополосный оптический фильтр на основе последовательно соединенных длиннопериодных волоконных решеток / С. Чен [и др.] // Письма в ЖТФ. 2005. Т. 31, № 5. С. 76–83. URL: http://journals.ioffe.ru/articles/viewPDF/11510

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Базовая неоднородность

Скачать (59KB)
3. Рис. 2. Двухкаскадная ДПВР

Скачать (71KB)
4. Рис. 3. Спектр пропускания ДПВР с периодом T = 122 мкм, L = 1,9886 см

Скачать (90KB)
5. Рис. 4. Спектральная зависимость модуля коэффициента возбуждения волны HE19 ДПВР с периодом T = 122 мкм, L=1,9886 см

Скачать (95KB)
6. Рис. 5. Спектр пропускания каскадной решетки с параметрами T = 750 мкм, L = 3,1125 см, Lв = 18,746 см

Скачать (103KB)
7. Рис.6. Спектральная зависимость модуля коэффициента возбуждения волны HE15 каскадной решетки с параметрами T = 750 мкм, L = 3,1125 см, Lв = 18,746 см

Скачать (106KB)
8. Рис. 7. Спектральная зависимость модуля коэффициента возбуждения волны HE18 каскадной решетки с параметрами T = 750 мкм, L = 3,1125 см, Lв = 18,746 см

Скачать (96KB)
9. Рис. 8. Спектр пропускания каскадной решетки с параметрами: T = 752 мкм, L = 4,1736 см, Lв = 18,756 см

Скачать (103KB)
10. Рис. 9. Спектр пропускания каскадной решетки с параметрами: T = 750 мкм, L = 2,6625 см, Lв = 18,75 см

Скачать (103KB)
11. Рис. 10. Спектр пропускания каскадной решетки с параметрами: T = 750 мкм, L = 2,6625 см, Lв = 18,747 см

Скачать (105KB)

© Бударагин Р.В., Курзенков М.И., Радионов А.А., Саласенко З.Ю., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ФС 77 - 68199 от 27.12.2016.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах