Разрешимость обратной коэффициентной задачи с интегральным переопределением для одномерного параболического уравнения

Обложка


Цитировать

Полный текст

Аннотация

Исследуется разрешимость коэффициентной обратной задачи с нелокальными краевыми условиями и интегральным условием переопределения для одномерного параболического уравнения. Обоснование существования единственного решения базируется на полученных в работе априорных оценках и результатах о разрешимости прямой нелокальной задачи для изучаемого уравнения.

Полный текст

Введение

Статья посвящена исследованию разрешимости задачи, которую будем называть задача К, состоящей в нахождении пары функций (U(x,t),p(t)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw facaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaWGWbGaaGik aiaadshacaaIPaGaaGykaaaa@404C@ таких, что в области Q T =(0,l)×(0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaWGubaabeaakiaai2dacaaIOaGaaGimaiaaiYcacaWGSbGa aGykaiabgEna0kaaiIcacaaIWaGaaGilaiaadsfacaaIPaaaaa@422A@

U t (a(x,t) U x ) x +p(t)U+c(x,t)U=f(x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWG0baabeaakiabgkHiTiaaiIcacaWGHbGaaGikaiaadIha caaISaGaamiDaiaaiMcacaWGvbWaaSbaaSqaaiaadIhaaeqaaOGaaG ykamaaBaaaleaacaWG4baabeaakiabgUcaRiaadchacaaIOaGaamiD aiaaiMcacaWGvbGaey4kaSIaam4yaiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaamyvaiaai2dacaWGMbGaaGikaiaadIhacaaISaGaamiD aiaaiMcacaaISaaaaa@54C2@ (1)

выполняются начальное и краевые условия

U(x,0)=φ(x),x[0,l], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaaiI cacaWG4bGaaGilaiaaicdacaaIPaGaaGypaiabeA8aQjaaiIcacaWG 4bGaaGykaiaaiYcacaaMf8UaamiEaiabgIGiolaaiUfacaaIWaGaaG ilaiaadYgacaaIDbGaaGilaaaa@492D@ (2)

a(0,t) U x (0,t)+ α 1 (t)U(0,t)+ β 1 (t)U(l,t)+ 0 l H 1 (x,t)U(x,t)dx=0, a(l,t) U x (l,t)+ α 2 (t)U(0,t)+ β 2 (t)U(l,t)+ 0 l H 2 (x,t)U(x,t)dx=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaa qaaiaadggacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaadwfadaWg aaWcbaGaamiEaaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykai abgUcaRiabeg7aHnaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGa aGykaiaadwfacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiabgUcaRi abek7aInaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaa dwfacaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiabgUcaRmaapehabe WcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadIeadaWgaaWcbaGa aGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwfaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaaGypaiaa icdacaaISaaabaGaamyyaiaaiIcacaWGSbGaaGilaiaadshacaaIPa GaamyvamaaBaaaleaacaWG4baabeaakiaaiIcacaWGSbGaaGilaiaa dshacaaIPaGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaaG ikaiaadshacaaIPaGaamyvaiaaiIcacaaIWaGaaGilaiaadshacaaI PaGaey4kaSIaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaads hacaaIPaGaamyvaiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaey4k aSYaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamisam aaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaamyvaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadI hacaaI9aGaaGimaiaaiYcaaaaaaa@9D90@ (3)

а также условие переопределения

0 l U(x,t)dx=E(t),t[0,T]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamyvaiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaamizaiaadIhacaaI9aGaamyraiaaiIcaca WG0bGaaGykaiaaiYcacaaMf8UaamiDaiabgIGiolaaiUfacaaIWaGa aGilaiaadsfacaaIDbGaaGOlaaaa@4E20@ (4)

Функции a(x,t),c(x,t),f(x,t), H i (x,t),i=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaadogacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaaiYcacaWGMbGaaGikaiaadIhacaaISa GaamiDaiaaiMcacaaISaGaamisamaaBaaaleaacaWGPbaabeaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaadMgacaaI9aGaaG ymaiaaiYcacaaIYaGaaGilaaaa@5251@ заданы в Q T , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaWGubaabeaakiaaiYcaaaa@388E@ причем a(x,t)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGOpaiaaicdaaaa@3C6C@ всюду в Q ¯ T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyuayaara WaaSbaaSqaaiaadsfaaeqaaaaa@37E6@ , E(t), α i (t), β i (t),i=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaaiI cacaWG0bGaaGykaiaaiYcacqaHXoqydaWgaaWcbaGaamyAaaqabaGc caaIOaGaamiDaiaaiMcacaaISaGaeqOSdi2aaSbaaSqaaiaadMgaae qaaOGaaGikaiaadshacaaIPaGaaGilaiaadMgacaaI9aGaaGymaiaa iYcacaaIYaGaaGilaaaa@4A19@ заданы в [0,T], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaamivaiaai2facaaISaaaaa@3ABE@ и E(t)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaaiI cacaWG0bGaaGykaiabgcMi5kaaicdaaaa@3B9C@ для всех t[0,T], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaaIWaGaaGilaiaadsfacaaIDbGaaGilaaaa@3D3B@ тогда как p(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaaiI cacaWG0bGaaGykaaaa@3946@ подлежит определению.

Интерес к обратным задачам с неизвестным коэффициентом, зависящим лишь от переменной времени, связан с тем фактором, что такие ситуации возникают в различных приложениях, например, в задачах управления [1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ 3], в задачах со свободной границей [17].

Особенностью задачи (1)(4) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacaaIPaGaeyOeI0IaeyOeI0IaaGikaiaaisdacaaIPaaaaa@3C10@ являются нелокальные краевые условия.

Условия вида (3) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaio dacaaIPaaaaa@3815@ возникают при изучении различных процессов тепломассопереноса, термоупругости, а также тесно связаны с задачами управления. Примеры, иллюстрирующие эти утверждения, можно найти в [16], а также в статьях, ссылки на которые содержатся в списке литературы отмеченной статьи.

Заметим, что нелокальные краевые условия (3) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaio dacaaIPaaaaa@3815@ являются обобщением краевых условий статьи [3], которые, в свою очередь, являются обобщением условий (S) Стеклова [18], возникающих при исследовании процесса остывания твердого тела:

α 11 u x (0,t)+ α 12 u x (l,t)+ β 11 u(0,t)+ β 12 u(l,t)= g 1 (t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaigdacaaIXaaabeaakiaadwhadaWgaaWcbaGaamiEaaqa baGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiabgUcaRiabeg7aHn aaBaaaleaacaaIXaGaaGOmaaqabaGccaWG1bWaaSbaaSqaaiaadIha aeqaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGHRaWkcqaHYo GydaWgaaWcbaGaaGymaiaaigdaaeqaaOGaamyDaiaaiIcacaaIWaGa aGilaiaadshacaaIPaGaey4kaSIaeqOSdi2aaSbaaSqaaiaaigdaca aIYaaabeaakiaadwhacaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiaa i2dacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPa GaaGilaaaa@6177@

α 21 u x (0,t)+ α 22 u x (l,t)+ β 21 u(0,t)+ β 22 u(l,t)= g 2 (t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaikdacaaIXaaabeaakiaadwhadaWgaaWcbaGaamiEaaqa baGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiabgUcaRiabeg7aHn aaBaaaleaacaaIYaGaaGOmaaqabaGccaWG1bWaaSbaaSqaaiaadIha aeqaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGHRaWkcqaHYo GydaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaamyDaiaaiIcacaaIWaGa aGilaiaadshacaaIPaGaey4kaSIaeqOSdi2aaSbaaSqaaiaaikdaca aIYaaabeaakiaadwhacaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiaa i2dacaWGNbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaIPa GaaGilaaaa@617C@

где α ij , β ij MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadMgacaWGQbaabeaakiaaiYcacqaHYoGydaWgaaWcbaGa amyAaiaadQgaaeqaaaaa@3E05@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ числа. Эта статья, по-видиммому, является первой статьей, посвященной исследованию разрешимости задачи для уравнения теплопроводности с условиями (S) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaado facaaIPaaaaa@3830@ , которые гораздо позднее стали называть нелокальными условиями.

Таким образом, условия (3) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaio dacaaIPaaaaa@3815@ изучаемой задачи можно интерпретировать как возмущенные (в силу присутствия интегральных слагаемых) обобщения условий Стеклова.

Условие переопределения (4) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaais dacaaIPaaaaa@3816@ имеет интегральное представление, и его естественно понимать как результат действия некоего прибора [19], дающего информацию о среднем значении искомого решения. Обратные задачи с интегральным условием переопределения рассматривались в работах Камынина [7 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ 9], но в них задан интеграл по переменной времени t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@ . В нашей работе условие переопределения представляет собой интеграл по пространственной переменной.

Нелинейные обратные задачи с неизвестными коэффициентами, зависящими от переменной времени, изучались различными методами многими авторами. Отметим как наиболее близкие по виду условия переопределения, кроме упомянутых уже [1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ 9] еще и работы [10; 11].

1. Разрешимость задачи К

Начнем исследование задачи К с выполнения преобразований

r(t)=exp{ 0 t p(τ)dτ},u(x,t)=U(x,t)r(t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGykaiaai2daciGGLbGaaiiEaiaacchacaaI7bGaeyOe I0Yaa8qmaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamiCai aaiIcacqaHepaDcaaIPaGaamizaiabes8a0jaai2hacaaISaGaaGzb VlaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2dacaWGvb GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGYbGaaGikaiaadsha caaIPaGaaGOlaaaa@5BA5@ (5)

Тогда, если (U(x,t),p(t)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw facaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaWGWbGaaGik aiaadshacaaIPaGaaGykaaaa@404C@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ решение задачи К, то введенные в (5) новые функции удовлетворяют равенствам

u t (a(x,t) u x ) x +c(x,t)u=r(t)f(x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWG0baabeaakiabgkHiTiaaiIcacaWGHbGaaGikaiaadIha caaISaGaamiDaiaaiMcacaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaaG ykamaaBaaaleaacaWG4baabeaakiabgUcaRiaadogacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaadwhacaaI9aGaamOCaiaaiIcacaWG0b GaaGykaiaadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYca aaa@5368@ (6)

u(x,0)=φ(x),x[0,l], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaaicdacaaIPaGaaGypaiabeA8aQjaaiIcacaWG 4bGaaGykaiaaiYcacaaMf8UaamiEaiabgIGiolaaiUfacaaIWaGaaG ilaiaadYgacaaIDbGaaGilaaaa@494D@ (7)

a(0,t) u x (0,t)+ α 1 (t)u(0,t)+ β 1 (t)u(l,t)+ 0 l H 1 (x,t)u(x,t)dx=0, a(l,t) u x (l,t)+ α 2 (t)u(0,t)+ β 2 (t)u(l,t)+ 0 l H 2 (x,t)u(x,t)dx=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaa qaaiaadggacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaadwhadaWg aaWcbaGaamiEaaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykai abgUcaRiabeg7aHnaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGa aGykaiaadwhacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiabgUcaRi abek7aInaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaa dwhacaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiabgUcaRmaapehabe WcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadIeadaWgaaWcbaGa aGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaaGypaiaa icdacaaISaaabaGaamyyaiaaiIcacaWGSbGaaGilaiaadshacaaIPa GaamyDamaaBaaaleaacaWG4baabeaakiaaiIcacaWGSbGaaGilaiaa dshacaaIPaGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaaG ikaiaadshacaaIPaGaamyDaiaaiIcacaaIWaGaaGilaiaadshacaaI PaGaey4kaSIaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaads hacaaIPaGaamyDaiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaey4k aSYaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamisam aaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaamyDaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadI hacaaI9aGaaGimaiaaiYcaaaaaaa@9E90@ (8)

r(t)=[E(t )] 1 0 l u(x,t)dx,t[0,T]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGykaiaai2dacaaIBbGaamyraiaaiIcacaWG0bGaaGyk aiaai2fadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaWdXaqabSqaai aaicdaaeaacaWGSbaaniabgUIiYdGccaWG1bGaaGikaiaadIhacaaI SaGaamiDaiaaiMcacaWGKbGaamiEaiaaiYcacaaMf8UaamiDaiabgI GiolaaiUfacaaIWaGaaGilaiaadsfacaaIDbGaaGOlaaaa@5540@ (9)

Из (6) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (9) видно, что преобразования (5) сводят коэффициентную и, стало быть, нелинейную, задачу К к линейной обратной задаче определения источника, другими словами, правой части уравнения (6). Назовем ее задача R. Если окажется, что существует решение (u,r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw hacaaISaGaamOCaiaaiMcaaaa@39FF@ задачи R, то решение задачи К может быть получено с помощью обратных к (5) преобразований

U(x,t)= u(x,t) r(t) ,p(t)= r (t) r(t) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypamaalaaabaGaamyDaiaa iIcacaWG4bGaaGilaiaadshacaaIPaaabaGaamOCaiaaiIcacaWG0b GaaGykaaaacaaISaGaaGzbVlaadchacaaIOaGaamiDaiaaiMcacaaI 9aGaeyOeI0YaaSaaaeaaceWGYbGbauaacaaIOaGaamiDaiaaiMcaae aacaWGYbGaaGikaiaadshacaaIPaaaaiaai6caaaa@52DE@ (10)

Уточним понятие решений задач. Начнем с задачи К.

Определение 1. Решением задачи K будем называть пару функций (U,p) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw facaaISaGaamiCaiaaiMcaaaa@39DD@ таких, что U W 2 1,1 ( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaigdacaaISaGaaGymaaaa kiaaiIcacaWGrbWaaSbaaSqaaiaadsfaaeqaaOGaaGykaaaa@3F96@ , p L 2 (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabgI GiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiYca caWGubGaaGykaaaa@3DDD@ , U(x,0)=φ(x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaaiI cacaWG4bGaaGilaiaaicdacaaIPaGaaGypaiabeA8aQjaaiIcacaWG 4bGaaGykaiaaiYcaaaa@403B@ для всех v W ^ 2 1 ( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgI GiolqadEfagaqcamaaDaaaleaacaaIYaaabaGaaGymaaaakiaaiIca caWGrbWaaSbaaSqaaiaadsfaaeqaaOGaaGykaaaa@3E56@ справедливо тождество

0 T 0 l [ U t v+a(x,t) U x v x +p(t)U+c(x,t)U]dxdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOWaa8qmaeqaleaacaaIWaaa baGaamiBaaqdcqGHRiI8aOGaaG4waiaadwfadaWgaaWcbaGaamiDaa qabaGccaWG2bGaey4kaSIaamyyaiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaamyvamaaBaaaleaacaWG4baabeaakiaadAhadaWgaaWcba GaamiEaaqabaGccqGHRaWkcaWGWbGaaGikaiaadshacaaIPaGaamyv aiabgUcaRiaadogacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadw facaaIDbGaamizaiaadIhacaWGKbGaamiDaiabgUcaRaaa@5CEB@

+ 0 T v(l,t)[ α 2 U(0,t)+ β 2 U(l,t)+ 0 l H 2 (x,t)U(x,t)dx]dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamODaiaaiIca caWGSbGaaGilaiaadshacaaIPaGaaG4waiabeg7aHnaaBaaaleaaca aIYaaabeaakiaadwfacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiab gUcaRiabek7aInaaBaaaleaacaaIYaaabeaakiaadwfacaaIOaGaam iBaiaaiYcacaWG0bGaaGykaiabgUcaRmaapedabeWcbaGaaGimaaqa aiaadYgaa0Gaey4kIipakiaadIeadaWgaaWcbaGaaGOmaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwfacaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiaadsgacaWG4bGaaGyxaiaadsgacaWG0bGaey OeI0caaa@6526@

0 T v(0,t)[ α 1 U(0,t)+ β 1 U(l,t)+ 0 l H 1 (x,t)U(x,t)dx]dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamODaiaaiIca caaIWaGaaGilaiaadshacaaIPaGaaG4waiabeg7aHnaaBaaaleaaca aIXaaabeaakiaadwfacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiab gUcaRiabek7aInaaBaaaleaacaaIXaaabeaakiaadwfacaaIOaGaam iBaiaaiYcacaWG0bGaaGykaiabgUcaRmaapedabeWcbaGaaGimaaqa aiaadYgaa0Gaey4kIipakiaadIeadaWgaaWcbaGaaGymaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwfacaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiaadsgacaWG4bGaaGyxaiaadsgacaWG0bGaaG ypaaaa@64D1@

= 0 T 0 l f(x,t)v(x,t)dxdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakmaapedabeWcbaGa aGimaaqaaiaadYgaa0Gaey4kIipakiaadAgacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaadAhacaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiaadsgacaWG4bGaamizaiaadshaaaa@4C30@ (11)

и выполняется равенство

0 l U(x,t)dx=E(t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamyvaiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaamizaiaadIhacaaI9aGaamyraiaaiIcaca WG0bGaaGykaiaai6caaaa@454A@

Теорема 1. Пусть выполняются следующие условия:

a)a, a t ,cC( Q ¯ T ), α i , β i C 1 [0,T],φ L 2 (0,l), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiM cacaaMe8UaaGjbVlaadggacaaISaGaamyyamaaBaaaleaacaWG0baa beaakiaaiYcacaWGJbGaeyicI4Saam4qaiaaiIcaceWGrbGbaebada WgaaWcbaGaamivaaqabaGccaaIPaGaaGilaiaaysW7cqaHXoqydaWg aaWcbaGaamyAaaqabaGccaaISaGaeqOSdi2aaSbaaSqaaiaadMgaae qaaOGaeyicI4Saam4qamaaCaaaleqabaGaaGymaaaakiaaiUfacaaI WaGaaGilaiaadsfacaaIDbGaaGilaiaaysW7cqaHgpGAcqGHiiIZca WGmbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaaicdacaaISaGaamiB aiaaiMcacaaISaaaaa@613A@

b)f, H i , H it C( Q ¯ T ),EC[0,T],E(t)0t[0,T], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaaiM cacaaMe8UaamOzaiaaiYcacaWGibWaaSbaaSqaaiaadMgaaeqaaOGa aGilaiaadIeadaWgaaWcbaGaamyAaiaadshaaeqaaOGaeyicI4Saam 4qaiaaiIcaceWGrbGbaebadaWgaaWcbaGaamivaaqabaGccaaIPaGa aGilaiaaysW7caWGfbGaeyicI4Saam4qaiaaiUfacaaIWaGaaGilai aadsfacaaIDbGaaGilaiaaysW7caWGfbGaaGikaiaadshacaaIPaGa eyiyIKRaaGimaiaaysW7caaMe8UaeyiaIiIaamiDaiabgIGiolaaiU facaaIWaGaaGilaiaadsfacaaIDbGaaGilaaaa@6286@

c) α 2 (t)+ β 1 (t)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaaiM cacaaMe8UaaGjbVlabeg7aHnaaBaaaleaacaaIYaaabeaakiaaiIca caWG0bGaaGykaiabgUcaRiabek7aInaaBaaaleaacaaIXaaabeaaki aaiIcacaWG0bGaaGykaiaai2dacaaIWaGaaGilaaaa@47A0@

d) α 1 (t) ξ 2 +2 β 1 (t)ξη β 2 (t) η 2 0,t[0,T]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaaiM cacaaMe8UaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadsha caaIPaGaeqOVdG3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmai abek7aInaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiab e67a4jabeE7aOjabgkHiTiabek7aInaaBaaaleaacaaIYaaabeaaki aaiIcacaWG0bGaaGykaiabeE7aOnaaCaaaleqabaGaaGOmaaaakiab gsMiJkaaicdacaaISaGaaGjbVlaaysW7caWG0bGaeyicI4SaaG4wai aaicdacaaISaGaamivaiaai2facaaIUaaaaa@60C3@

Тогда существует единственное решение (U(x,t),p(t)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw facaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaWGWbGaaGik aiaadshacaaIPaGaaGykaaaa@404C@ задачи K.

Доказательство Теоремы 1 базируется на факте разрешимости задачи R и будет предъявлено после того, как мы докажем существование единственного решения задачи R, принадлежащего нужному нам пространству, что мы уточним ниже. Поэтому перейдем к исследованию задачи R.

1.1. Разрешимость задачи R

Определение 2.

Решением задачи R будем называть пару функций (u,r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw hacaaISaGaamOCaiaaiMcaaaa@39FF@ таких, что u W 2 1,0 ( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaigdacaaISaGaaGimaaaa kiaaiIcacaWGrbWaaSbaaSqaaiaadsfaaeqaaOGaaGykaaaa@3FB5@ , r L 2 (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgI GiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiYca caWGubGaaGykaaaa@3DDF@ , для всех v W ^ 2 1 ( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgI GiolqadEfagaqcamaaDaaaleaacaaIYaaabaGaaGymaaaakiaaiIca caWGrbWaaSbaaSqaaiaadsfaaeqaaOGaaGykaaaa@3E56@ справедливо тождество

0 T 0 l [u v t +a(x,t) u x v x +c(x,t)u]dxdt+ 0 l φ(x)v(x,0)dx+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOWaa8qmaeqaleaacaaIWaaa baGaamiBaaqdcqGHRiI8aOGaaG4waiabgkHiTiaadwhacaWG2bWaaS baaSqaaiaadshaaeqaaOGaey4kaSIaamyyaiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamyDamaaBaaaleaacaWG4baabeaakiaadAhada WgaaWcbaGaamiEaaqabaGccqGHRaWkcaWGJbGaaGikaiaadIhacaaI SaGaamiDaiaaiMcacaWG1bGaaGyxaiaadsgacaWG4bGaamizaiaads hacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGc cqaHgpGAcaaIOaGaamiEaiaaiMcacaWG2bGaaGikaiaadIhacaaISa GaaGimaiaaiMcacaWGKbGaamiEaiabgUcaRaaa@68BC@

+ 0 T v(l,t)[ α 2 u(0,t)+ β 2 u(l,t)+ 0 l H 2 (x,t)u(x,t)dx]dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamODaiaaiIca caWGSbGaaGilaiaadshacaaIPaGaaG4waiabeg7aHnaaBaaaleaaca aIYaaabeaakiaadwhacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiab gUcaRiabek7aInaaBaaaleaacaaIYaaabeaakiaadwhacaaIOaGaam iBaiaaiYcacaWG0bGaaGykaiabgUcaRmaapedabeWcbaGaaGimaaqa aiaadYgaa0Gaey4kIipakiaadIeadaWgaaWcbaGaaGOmaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhacaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiaadsgacaWG4bGaaGyxaiaadsgacaWG0bGaey OeI0caaa@6586@

0 T v(0,t)[ α 1 u(0,t)+ β 1 u(l,t)+ 0 l H 1 (x,t)u(x,t)dx]dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamODaiaaiIca caaIWaGaaGilaiaadshacaaIPaGaaG4waiabeg7aHnaaBaaaleaaca aIXaaabeaakiaadwhacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiab gUcaRiabek7aInaaBaaaleaacaaIXaaabeaakiaadwhacaaIOaGaam iBaiaaiYcacaWG0bGaaGykaiabgUcaRmaapedabeWcbaGaaGimaaqa aiaadYgaa0Gaey4kIipakiaadIeadaWgaaWcbaGaaGymaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhacaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiaadsgacaWG4bGaaGyxaiaadsgacaWG0bGaaG ypaaaa@6531@

= 0 T 0 l f(x,t)r(t)v(x,t)dxdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakmaapedabeWcbaGa aGimaaqaaiaadYgaa0Gaey4kIipakiaadAgacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaadkhacaaIOaGaamiDaiaaiMcacaWG2bGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiaadsgacaWG0b aaaa@4F85@ (12) 

и выполняется равенство

0 l u(x,t)dx=E(t)r(t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamyDaiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaamizaiaadIhacaaI9aGaamyraiaaiIcaca WG0bGaaGykaiaadkhacaaIOaGaamiDaiaaiMcacaaIUaaaaa@48BF@ (13)

Теорема 2. Пусть выполнены условия Теоремы 1. Тогда существует единственное решение задачи R.

Доказательство.

Не ограничивая общности, положим φ(x)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaIPaGaaGypaiaaicdaaaa@3B93@ . Будем искать приближенные решения задачи R из соотношений:

0 T 0 l ( u n v t +a(x,t) u nx v x +c(x,t) u n v)dxdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOWaa8qmaeqaleaacaaIWaaa baGaamiBaaqdcqGHRiI8aOGaaGikaiabgkHiTiaadwhadaWgaaWcba GaamOBaaqabaGccaWG2bWaaSbaaSqaaiaadshaaeqaaOGaey4kaSIa amyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamyDamaaBaaale aacaWGUbGaamiEaaqabaGccaWG2bWaaSbaaSqaaiaadIhaaeqaaOGa ey4kaSIaam4yaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamyDam aaBaaaleaacaWGUbaabeaakiaadAhacaaIPaGaamizaiaadIhacaWG KbGaamiDaiabgkHiTaaa@5D0D@

0 T v(0,t)[ α 1 (t) u n (0,t)+ β 1 (t) u n (l,t)+ 0 l H 1 (x,t) u n (x,t)dx]dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamODaiaaiIca caaIWaGaaGilaiaadshacaaIPaGaaG4waiabeg7aHnaaBaaaleaaca aIXaaabeaakiaaiIcacaWG0bGaaGykaiaadwhadaWgaaWcbaGaamOB aaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiabgUcaRiabek 7aInaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaadwha daWgaaWcbaGaamOBaaqabaGccaaIOaGaamiBaiaaiYcacaWG0bGaaG ykaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipa kiaadIeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaadwhadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaaGyxaiaadsgacaWG0b Gaey4kaScaaa@6DC3@

+ 0 T v(l,t)[ α 2 (t) u n (0,t)+ β 2 (t) u n (l,t)+ 0 l H 2 (x,t) u n (x,t)dx]dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamODaiaaiIca caWGSbGaaGilaiaadshacaaIPaGaaG4waiabeg7aHnaaBaaaleaaca aIYaaabeaakiaaiIcacaWG0bGaaGykaiaadwhadaWgaaWcbaGaamOB aaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiabgUcaRiabek 7aInaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaadwha daWgaaWcbaGaamOBaaqabaGccaaIOaGaamiBaiaaiYcacaWG0bGaaG ykaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipa kiaadIeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaadwhadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaaGyxaiaadsgacaWG0b GaaGypaaaa@6DD7@

= 0 T 0 l vf(x,t) r n (t)dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakmaapedabeWcbaGa aGimaaqaaiaadYgaa0Gaey4kIipakiaadAhacaWGMbGaaGikaiaadI hacaaISaGaamiDaiaaiMcacaWGYbWaaSbaaSqaaiaad6gaaeqaaOGa aGikaiaadshacaaIPaGaamizaiaadIhacaWGKbGaamiDaiaaiYcaaa a@4D53@ (14)

r n (t)= 1 E(t) 0 l u n1 (x,t)dx, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGykaiaai2dadaWcaaqa aiaaigdaaeaacaWGfbGaaGikaiaadshacaaIPaaaamaapedabeWcba GaaGimaaqaaiaadYgaa0Gaey4kIipakiaadwhadaWgaaWcbaGaamOB aiabgkHiTiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiM cacaWGKbGaamiEaiaaiYcaaaa@4D82@ (15)

выбрав

u 0 = E(t) l . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIWaaabeaakiaai2dadaWcaaqaaiaadweacaaIOaGaamiD aiaaiMcaaeaacaWGSbaaaiaai6caaaa@3D85@

В силу выбора нулевого приближения u 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIWaaabeaaaaa@37D3@ из (13 найдем r 1 (t)=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaai2dacaaIXaaa aa@3BBB@ . Тогда для n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaaaaa@3868@ (14) представляет собой тождество, определяющее обобщенное решение нелокальной прямой задачи N в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaWGubaabeaaaaa@37CE@ , состоящей в нахождении решения уравнения

u t (a(x,t) u x ) x +c(x,t)u=f(x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWG0baabeaakiabgkHiTiaaiIcacaWGHbGaaGikaiaadIha caaISaGaamiDaiaaiMcacaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaaG ykamaaBaaaleaacaWG4baabeaakiabgUcaRiaadogacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaadwhacaaI9aGaamOzaiaaiIcacaWG4b GaaGilaiaadshacaaIPaGaaGilaaaa@5013@

удовлетворяющего начальным данным

u(x,0)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaaicdacaaIPaGaaGypaiaaicdacaaISaaaaa@3CF6@

и нелокальным условиям

a(0,t) u x (0,t)+ α 1 (t)u(0,t)+ β 1 (t)u(l,t)+ 0 l H 1 (x,t)u(x,t)dx=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaaIWaGaaGilaiaadshacaaIPaGaamyDamaaBaaaleaacaWG4baa beaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaey4kaSIaeqySde 2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaamyDaiaa iIcacaaIWaGaaGilaiaadshacaaIPaGaey4kaSIaeqOSdi2aaSbaaS qaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaamyDaiaaiIcacaWG SbGaaGilaiaadshacaaIPaGaey4kaSYaa8qCaeqaleaacaaIWaaaba GaamiBaaqdcqGHRiI8aOGaamisamaaBaaaleaacaaIXaaabeaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaamyDaiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaamizaiaadIhacaaI9aGaaGimaiaaiYcaaaa@6A03@

a(l,t) u x (l,t)+ α 2 (t)u(0,t)+ β 2 (t)u(l,t)+ 0 l H 2 (x,t)u(x,t)dx=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWGSbGaaGilaiaadshacaaIPaGaamyDamaaBaaaleaacaWG4baa beaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaey4kaSIaeqySde 2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaamyDaiaa iIcacaaIWaGaaGilaiaadshacaaIPaGaey4kaSIaeqOSdi2aaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaamyDaiaaiIcacaWG SbGaaGilaiaadshacaaIPaGaey4kaSYaa8qCaeqaleaacaaIWaaaba GaamiBaaqdcqGHRiI8aOGaamisamaaBaaaleaacaaIYaaabeaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaamyDaiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaamizaiaadIhacaaI9aGaaGimaiaai6caaaa@6A76@

Разрешимость в W 2 1,0 ( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaaIYaaabaGaaGymaiaaiYcacaaIWaaaaOGaaGikaiaadgfa daWgaaWcbaGaamivaaqabaGccaaIPaaaaa@3D37@ этой задачи доказана в [25], поэтому существует единственная функция u 1 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@3BEF@ , удовлетворяющая тождеству (12).

Тогда мы можем найти r 2 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaaaa@3A3A@ из (15), причем очевидно, что r 2 L 2 (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIYaaabeaakiabgIGiolaadYeadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaaGimaiaaiYcacaWGubGaaGykaaaa@3ED1@ . Действительно,

r 2 (t)= 1 E(t) 0 l u 1 (x,t)dx, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaai2dadaWcaaqa aiaaigdaaeaacaWGfbGaaGikaiaadshacaaIPaaaamaapedabeWcba GaaGimaaqaaiaadYgaa0Gaey4kIipakiaadwhadaWgaaWcbaGaaGym aaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4b GaaGilaaaa@4B6B@

откуда с помощью неравенства Коши MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ Буняковского получим

r 2 2 (t) l E 2 (t) 0 l u 1 2 (x,t)dx. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaDa aaleaacaaIYaaabaGaaGOmaaaakiaaiIcacaWG0bGaaGykaiabgsMi JoaalaaabaGaamiBaaqaaiaadweadaahaaWcbeqaaiaaikdaaaGcca aIOaGaamiDaiaaiMcaaaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqd cqGHRiI8aOGaamyDamaaDaaaleaacaaIXaaabaGaaGOmaaaakiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhacaaIUaaaaa@4EFE@

Интегрируя полученное неравенство по (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaic dacaaISaGaamivaiaaiMcaaaa@39A1@ и учитывая, что E(t)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaaiI cacaWG0bGaaGykaiabgcMi5kaaicdaaaa@3B9C@ всюду в [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaamivaiaai2faaaa@3A08@ и там же непрерывна, а следовательно, найдется положительное число E 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaaIWaaabeaaaaa@37A3@ такое, что [ E 2 (t)] 1 < E 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadw eadaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiDaiaaiMcacaaIDbWa aWbaaSqabeaacqGHsislcaaIXaaaaOGaaGipaiaadweadaWgaaWcba GaaGimaaqabaGccaaISaaaaa@40EF@ приходим к неравенству

0 T r 2 2 dt E 0 0 T 0 l u 1 2 (x,t)dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamOCamaaDaaaleaacaaI YaaabaGaaGOmaaaakiaadsgacaWG0bGaeyizImQaamyramaaBaaale aacaaIWaaabeaakmaapedabeWcbaGaaGimaaqaaiaadsfaa0Gaey4k IipakmaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadw hadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaaIOaGaamiEaiaaiYca caWG0bGaaGykaiaadsgacaWG4bGaamizaiaadshacaaISaaaaa@548E@

из которого в силу принадлежности u 1 W 2 1,0 ( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiabgIGiolaadEfadaqhaaWcbaGaaGOmaaqa aiaaigdacaaISaGaaGimaaaakiaaiIcacaWGrbWaaSbaaSqaaiaads faaeqaaOGaaGykaaaa@40A6@ следует ограниченность интеграла 0 T r 2 2 (t)dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamOCamaaDaaaleaacaaI YaaabaGaaGOmaaaakiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaaG Olaaaa@4158@

На следующем шаге заметим, что f r 2 L 2 (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadk hadaWgaaWcbaGaaGOmaaqabaGccqGHiiIZcaWGmbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaaicdacaaISaGaamivaiaaiMcaaaa@3FBC@ . Действительно, так как fC( Q ¯ T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaadoeacaaIOaGabmyuayaaraWaaSbaaSqaaiaadsfaaeqaaOGa aGykaaaa@3C8C@ , то существует k>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai6 dacaaIWaaaaa@3865@ такое, что max Q T |f| k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGrbWaaSbaaeaacaWGubaabeaaaeqakeaaciGGTbGaaiyyaiaa cIhaaaGaaGiFaiaadAgacaaI8bGaeyizIm6aaOaaaeaacaWGRbaale qaaaaa@40D2@ , тогда

0 T f 2 (x,t) r 2 2 (t)dtk 0 T r 2 2 (t)dt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamOzamaaCaaaleqabaGa aGOmaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamOCamaaDa aaleaacaaIYaaabaGaaGOmaaaakiaaiIcacaWG0bGaaGykaiaadsga caWG0bGaeyizImQaam4AamaapedabeWcbaGaaGimaaqaaiaadsfaa0 Gaey4kIipakiaadkhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaI OaGaamiDaiaaiMcacaWGKbGaamiDaiaaiYcaaaa@5497@

и в силу доказанной выше принадлежности r 2 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaaaa@3A3A@ пространству L 2 (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaadsfacaaIPaaa aa@3B64@ убеждаемся в справедливости утверждения.

Продолжив этот процесс, мы построим последовательности { u n (x,t)} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaadw hadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiaai2haaaa@3E33@ и { r n (t)} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaadk hadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiDaiaaiMcacaaI9baa aa@3C7D@ .

Покажем теперь, что эти последовательности сходятся. Для этого воспользуемся результатами статьи [25], немного модифицировав в ней оценку.

Приведем кратко вывод априорной оценки решения задачи N в нужной нам форме и представим его в виде Леммы.

Лемма 1. Решение задачи N, принадлежащее пространству W 2 1,0 ( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaaIYaaabaGaaGymaiaaiYcacaaIWaaaaOGaaGikaiaadgfa daWgaaWcbaGaamivaaqabaGccaaIPaaaaa@3D37@ , удовлетворяет неравенству

||u || W 2 1,0 ( Q T ) ε M||f || L 2 ( Q T ) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaaiY hacaWG1bGaaGiFaiaaiYhadaWgaaWcbaGaam4vamaaDaaabaGaaGOm aaqaaiaaigdacaaISaGaaGimaaaacaaIOaGaamyuamaaBaaabaGaam ivaaqabaGaaGykaaqabaGccqGHKjYOdaGcaaqaaiabew7aLbWcbeaa kiaad2eacaaI8bGaaGiFaiaadAgacaaI8bGaaGiFamaaBaaaleaaca WGmbWaaSbaaeaacaaIYaaabeaacaaIOaGaamyuamaaBaaabaGaamiv aaqabaGaaGykaaqabaGccaaISaaaaa@517A@

где число M>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaai6 dacaaIWaaaaa@3847@ и будет уточнено при доказательстве.

Доказательство. В [25] доказано существование функции u W 2 1,0 ( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaigdacaaISaGaaGimaaaa kiaaiIcacaWGrbWaaSbaaSqaaiaadsfaaeqaaOGaaGykaaaa@3FB5@ , которая является решением задачи N. Существенную роль в доказательстве играет полученная априорная оценка. Оставляя неизменными основные этапы вывода этой оценки, внесем в нее некоторые коррективы. Для наглядности приведем здесь коротко вывод равенства, из которого получена оценка.

Приближенное решение задачи N ищется в виде

u m (x,t)= k=1 m c km (t) w k (x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaamyBaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGypamaaqahabeWcbaGaam4Aaiaai2dacaaIXaaabaGaamyBaaqdcq GHris5aOGaam4yamaaBaaaleaacaWGRbGaamyBaaqabaGccaaIOaGa amiDaiaaiMcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadI hacaaIPaGaaGilaaaa@4D37@

где w k (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG4bGaaGykaaaa@3A77@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ фундаментальная система в W 2 1,0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaaIYaaabaGaaGymaiaaiYcacaaIWaaaaaaa@39E3@ из соотношений

0 l [ u t m w i (x)+a(x,t) u x m w i ' (x)+c(x,t) u m w i (x)]dx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4waiaadwhadaqhaaWc baGaamiDaaqaaiaad2gaaaGccaWG3bWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadIhacaaIPaGaey4kaSIaamyyaiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamyDamaaDaaaleaacaWG4baabaGaamyBaaaaki aadEhadaqhaaWcbaGaamyAaaqaaiaaiEcaaaGccaaIOaGaamiEaiaa iMcacqGHRaWkcaWGJbGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca WG1bWaaWbaaSqabeaacaWGTbaaaOGaam4DamaaBaaaleaacaWGPbaa beaakiaaiIcacaWG4bGaaGykaiaai2facaWGKbGaamiEaiabgkHiTa aa@60BC@

w i (0)[ α 1 u m (0,t)+ β 1 u m (l,t)+ 0 l H 1 (x,t) u m (x,t)dx]+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaam 4DamaaBaaaleaacaWGPbaabeaakiaaiIcacaaIWaGaaGykaiaaiUfa cqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWG1bWaaWbaaSqabeaaca WGTbaaaOGaaGikaiaaicdacaaISaGaamiDaiaaiMcacqGHRaWkcqaH YoGydaWgaaWcbaGaaGymaaqabaGccaWG1bWaaWbaaSqabeaacaWGTb aaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGHRaWkdaWdXaqa bSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSbaaSqaai aaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG1bWa aWbaaSqabeaacaWGTbaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiM cacaWGKbGaamiEaiaai2facqGHRaWkaaa@6294@

+ w i (l)[ α 2 u m (0,t)+ β 2 u m (l,t)+ 0 l H 2 (x,t) u m (x,t)dx]= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaam 4DamaaBaaaleaacaWGPbaabeaakiaaiIcacaWGSbGaaGykaiaaiUfa cqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaWG1bWaaWbaaSqabeaaca WGTbaaaOGaaGikaiaaicdacaaISaGaamiDaiaaiMcacqGHRaWkcqaH YoGydaWgaaWcbaGaaGOmaaqabaGccaWG1bWaaWbaaSqabeaacaWGTb aaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGHRaWkdaWdXaqa bSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSbaaSqaai aaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG1bWa aWbaaSqabeaacaWGTbaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiM cacaWGKbGaamiEaiaai2facaaI9aaaaa@62A8@

= 0 l f(x,t) w i (x)dx. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadAgacaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaadEhadaWgaaWcbaGaamyAaaqaba GccaaIOaGaamiEaiaaiMcacaWGKbGaamiEaiaai6caaaa@46B5@ (16)

В результате преобразований, которые подробно проделаны в [25], и здесь их опустим, получим

1 2 0 l ( u m (x,τ) 2 dx+ 0 τ 0 l a(x,t)( u x m ) 2 dxdt= 0 τ 0 l c(x,t)( u m ) 2 dxdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaadaWdXaqabSqaaiaaicdaaeaacaWGSbaaniab gUIiYdGccaaIOaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcaca WG4bGaaGilaiabes8a0jaaiMcadaahaaWcbeqaaiaaikdaaaGccaWG KbGaamiEaiabgUcaRmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcq GHRiI8aOWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGa amyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGikaiaadwhada qhaaWcbaGaamiEaaqaaiaad2gaaaGccaaIPaWaaWbaaSqabeaacaaI YaaaaOGaamizaiaadIhacaWGKbGaamiDaiaai2dacqGHsisldaWdXa qabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakmaapedabeWcbaGa aGimaaqaaiaadYgaa0Gaey4kIipakiaadogacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaaiIcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGa aGykamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG4bGaamizaiaads hacqGHRaWkaaa@75F3@

+ 0 τ α 1 (t)( u m (0,t )) 2 dt 0 τ β 2 (t)( u m (l,t )) 2 dt+2 0 τ β 1 (t) u m (0,t) u m (0,t)dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccqaHXoqydaWg aaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcacaaIOaGaamyDam aaCaaaleqabaGaamyBaaaakiaaiIcacaaIWaGaaGilaiaadshacaaI PaGaaGykamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG0bGaeyOeI0 Yaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccqaHYoGy daWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiMcacaaIOaGaam yDamaaCaaaleqabaGaamyBaaaakiaaiIcacaWGSbGaaGilaiaadsha caaIPaGaaGykamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG0bGaey 4kaSIaaGOmamaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8 aOGaeqOSdi2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPa GaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaaIWaGaaGilaiaa dshacaaIPaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaaIWa GaaGilaiaadshacaaIPaGaamizaiaadshacqGHRaWkaaa@797B@

+ 0 τ u m (0,t) 0 l H 1 (x,t) u m (x,t)dxdt 0 τ u m (l,t) 0 l H 2 (x,t) u m (x,t)dxdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG1bWaaWba aSqabeaacaWGTbaaaOGaaGikaiaaicdacaaISaGaamiDaiaaiMcada WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSba aSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca WG1bWaaWbaaSqabeaacaWGTbaaaOGaaGikaiaadIhacaaISaGaamiD aiaaiMcacaWGKbGaamiEaiaadsgacaWG0bGaeyOeI0Yaa8qmaeqale aacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG1bWaaWbaaSqabeaa caWGTbaaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcadaWdXaqabS qaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG1bWaaW baaSqabeaacaWGTbaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca caWGKbGaamiEaiaadsgacaWG0bGaey4kaScaaa@7578@

+ 0 τ 0 l f (x,t) m (x,t)dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqa aiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGMbGaaGikaiaadIhaca aISaGaamiDaiaaiMcadaahaaWcbeqaaiaad2gaaaGccaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaamizaiaadshacaaIUa aaaa@4E1D@ (17)

В силу условий теоремы 1 существуют положительные числа a 0 , b 0 , c 0 , h 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIWaaabeaakiaaiYcacaWGIbWaaSbaaSqaaiaaicdaaeqa aOGaaGilaiaadogadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiAam aaBaaaleaacaaIWaaabeaaaaa@3F6D@ такие, что

a(x,t) a 0 , max Q ¯ T |c| c 0 , max [0,T] | α i , β i | b 0 , max i max [0,T] 0 l H i 2 dx h 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaeyyzImRaamyyamaaBaaaleaa caaIWaaabeaakiaaiYcadaGfqbqabSqaaiqadgfagaqeamaaBaaaba GaamivaaqabaaabeGcbaGaciyBaiaacggacaGG4baaaiaaiYhacaWG JbGaaGiFaiabgsMiJkaadogadaWgaaWcbaGaaGimaaqabaGccaaISa WaaybuaeqaleaacaaIBbGaaGimaiaaiYcacaWGubGaaGyxaaqabOqa aiGac2gacaGGHbGaaiiEaaaacaaI8bGaeqySde2aaSbaaSqaaiaadM gaaeqaaOGaaGilaiabek7aInaaBaaaleaacaWGPbaabeaakiaaiYha cqGHKjYOcaWGIbWaaSbaaSqaaiaaicdaaeqaaOGaaGilamaawafabe WcbaGaamyAaaqabOqaaiGac2gacaGGHbGaaiiEaaaadaGfqbqabSqa aiaaiUfacaaIWaGaaGilaiaadsfacaaIDbaabeGcbaGaciyBaiaacg gacaGG4baaamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipa kiaadIeadaqhaaWcbaGaamyAaaqaaiaaikdaaaGccaWGKbGaamiEai abgsMiJkaadIgadaWgaaWcbaGaaGimaaqabaGccaaIUaaaaa@781C@

Оценим правую часть равенства (17), применив неравенства Коши, Коши MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ Буняковского, учитывая условие (ii) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadM gacaWGPbGaaGykaaaa@3934@ Теоремы 1, а также используя неравенства, выведенные в [25]

0 τ ( u m (0,t)) 2 a 0 2 0 τ 0 l ( u x m (x,t)) 2 dxdt+ 2(2l+ a 0 ) a 0 l 0 τ 0 l ( u m ) 2 dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaaIOaGaamyDamaaCaaa leqabaGaamyBaaaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaaG ykamaaCaaaleqabaGaaGOmaaaakiabgsMiJoaalaaabaGaamyyamaa BaaaleaacaaIWaaabeaaaOqaaiaaikdaaaWaa8qmaeqaleaacaaIWa aabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWG SbaaniabgUIiYdGccaaIOaGaamyDamaaDaaaleaacaWG4baabaGaam yBaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGykamaaCaaa leqabaGaaGOmaaaakiaadsgacaWG4bGaamizaiaadshacqGHRaWkda WcaaqaaiaaikdacaaIOaGaaGOmaiaadYgacqGHRaWkcaWGHbWaaSba aSqaaiaaicdaaeqaaOGaaGykaaqaaiaadggadaWgaaWcbaGaaGimaa qabaGccaWGSbaaamaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGH RiI8aOWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG ikaiaadwhadaahaaWcbeqaaiaad2gaaaGccaaIPaWaaWbaaSqabeaa caaIYaaaaOGaamizaiaadIhacaWGKbGaamiDaiaaiYcaaaa@78F3@

0 τ ( u m (l,t) 2 ) a 0 2 0 τ 0 l ( u x m ) 2 dxdt+ 2(2l+ a 0 ) a 0 l 0 τ 0 l ( u m ) 2 dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaaIOaGaamyDamaaCaaa leqabaGaamyBaaaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaWaaW baaSqabeaacaaIYaaaaOGaaGykaiabgsMiJoaalaaabaGaamyyamaa BaaaleaacaaIWaaabeaaaOqaaiaaikdaaaWaa8qmaeqaleaacaaIWa aabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWG SbaaniabgUIiYdGccaaIOaGaamyDamaaDaaaleaacaWG4baabaGaam yBaaaakiaaiMcadaahaaWcbeqaaiaaikdaaaGccaWGKbGaamiEaiaa dsgacaWG0bGaey4kaSYaaSaaaeaacaaIYaGaaGikaiaaikdacaWGSb Gaey4kaSIaamyyamaaBaaaleaacaaIWaaabeaakiaaiMcaaeaacaWG HbWaaSbaaSqaaiaaicdaaeqaaOGaamiBaaaadaWdXaqabSqaaiaaic daaeaacqaHepaDa0Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaa dYgaa0Gaey4kIipakiaaiIcacaWG1bWaaWbaaSqabeaacaWGTbaaaO GaaGykamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG4bGaamizaiaa dshacaaISaaaaa@7519@

получим

0 l ( u m (x,τ) 2 dx+ a 0 0 τ 0 l ( u x m (x,t)) 2 dxdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaGikaiaadwhadaahaaWc beqaaiaad2gaaaGccaaIOaGaamiEaiaaiYcacqaHepaDcaaIPaWaaW baaSqabeaacaaIYaaaaOGaamizaiaadIhacqGHRaWkcaWGHbWaaSba aSqaaiaaicdaaeqaaOWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhani abgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGc caaIOaGaamyDamaaDaaaleaacaWG4baabaGaamyBaaaakiaaiIcaca WG4bGaaGilaiaadshacaaIPaGaaGykamaaCaaaleqabaGaaGOmaaaa kiaadsgacaWG4bGaamizaiaadshacqGHKjYOaaa@5EAD@

2 c 1 0 τ 0 l ( u x m (x,t)) 2 dxdt+2| 0 τ 0 l f(x,t) u m (x,t)dxdt|, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG OmaiaadogadaWgaaWcbaGaaGymaaqabaGcdaWdXaqabSqaaiaaicda aeaacqaHepaDa0Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaadY gaa0Gaey4kIipakiaaiIcacaWG1bWaa0baaSqaaiaadIhaaeaacaWG TbaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIPaWaaWbaaS qabeaacaaIYaaaaOGaamizaiaadIhacaWGKbGaamiDaiabgUcaRiaa ikdacaaI8bWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYd GcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGMbGa aGikaiaadIhacaaISaGaamiDaiaaiMcacaWG1bWaaWbaaSqabeaaca WGTbaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiE aiaadsgacaWG0bGaaGiFaiaaiYcaaaa@6C0A@ (18)

где

c 1 = c 0 + h 0 + 2(2l+ a 0 ) a 0 l . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIXaaabeaakiaai2dacaWGJbWaaSbaaSqaaiaaicdaaeqa aOGaey4kaSIaamiAamaaBaaaleaacaaIWaaabeaakiabgUcaRmaala aabaGaaGOmaiaaiIcacaaIYaGaamiBaiabgUcaRiaadggadaWgaaWc baGaaGimaaqabaGccaaIPaaabaGaamyyamaaBaaaleaacaaIWaaabe aakiaadYgaaaGaaGOlaaaa@4821@

Последнее слагаемое (18) оценим с помощью неравенства "Коши с ε MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdugaaa@379A@ " и получим

0 l ( u m (x,τ) 2 dx+ a 0 0 τ 0 l ( u x m (x,t)) 2 dxdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaGikaiaadwhadaahaaWc beqaaiaad2gaaaGccaaIOaGaamiEaiaaiYcacqaHepaDcaaIPaWaaW baaSqabeaacaaIYaaaaOGaamizaiaadIhacqGHRaWkcaWGHbWaaSba aSqaaiaaicdaaeqaaOWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhani abgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGc caaIOaGaamyDamaaDaaaleaacaWG4baabaGaamyBaaaakiaaiIcaca WG4bGaaGilaiaadshacaaIPaGaaGykamaaCaaaleqabaGaaGOmaaaa kiaadsgacaWG4bGaamizaiaadshacqGHKjYOaaa@5EAD@

c 2 0 τ 0 l ( u m (x,t)) 2 dxdt+ε 0 τ 0 l f 2 (x,t)dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam 4yamaaBaaaleaacaaIYaaabeaakmaapedabeWcbaGaaGimaaqaaiab es8a0bqdcqGHRiI8aOWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcq GHRiI8aOGaaGikaiaadwhadaahaaWcbeqaaiaad2gaaaGccaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaaiMcadaahaaWcbeqaaiaaikdaaa GccaWGKbGaamiEaiaadsgacaWG0bGaey4kaSIaeqyTdu2aa8qmaeqa leaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaic daaeaacaWGSbaaniabgUIiYdGccaWGMbWaaWbaaSqabeaacaaIYaaa aOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiaads gacaWG0bGaaGilaaaa@63F0@ (19)

где

c 2 =2 c 1 + 1 ε . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaai2dacaaIYaGaam4yamaaBaaaleaacaaI XaaabeaakiabgUcaRmaalaaabaGaaGymaaqaaiabew7aLbaacaaIUa aaaa@3F35@

Усилим неравенство (19), прибавив к его правой части слагаемое

c 2 a 0 0 τ 0 l (τt)( u x m (x,t )) 2 dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaadggadaWgaaWcbaGaaGimaaqabaGcdaWd XaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakmaapedabeWcba GaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiIcacqaHepaDcqGHsisl caWG0bGaaGykaiaaiIcacaWG1bWaa0baaSqaaiaadIhaaeaacaWGTb aaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIPaWaaWbaaSqa beaacaaIYaaaaOGaamizaiaadIhacaWGKbGaamiDaiaaiYcaaaa@554C@ что приводит к неравенству

0 l ( u m (x,τ) 2 dx+ a 0 0 τ 0 l ( u x m ) 2 dxdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaGikaiaadwhadaahaaWc beqaaiaad2gaaaGccaaIOaGaamiEaiaaiYcacqaHepaDcaaIPaWaaW baaSqabeaacaaIYaaaaOGaamizaiaadIhacqGHRaWkcaWGHbWaaSba aSqaaiaaicdaaeqaaOWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhani abgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGc caaIOaGaamyDamaaDaaaleaacaWG4baabaGaamyBaaaakiaaiMcada ahaaWcbeqaaiaaikdaaaGccaWGKbGaamiEaiaadsgacaWG0bGaeyiz Imkaaa@5A9C@

c 2 [ 0 τ 0 l ( u m ) 2 dxdt++ a 0 0 τ 0 l (τt)( u x m ) 2 dxdt]+ε 0 τ 0 l f 2 dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam 4yamaaBaaaleaacaaIYaaabeaakiaaiUfadaWdXaqabSqaaiaaicda aeaacqaHepaDa0Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaadY gaa0Gaey4kIipakiaaiIcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGa aGykamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG4bGaamizaiaads hacqGHRaWkcqGHRaWkcaWGHbWaaSbaaSqaaiaaicdaaeqaaOWaa8qm aeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaai aaicdaaeaacaWGSbaaniabgUIiYdGccaaIOaGaeqiXdqNaeyOeI0Ia amiDaiaaiMcacaaIOaGaamyDamaaDaaaleaacaWG4baabaGaamyBaa aakiaaiMcadaahaaWcbeqaaiaaikdaaaGccaWGKbGaamiEaiaadsga caWG0bGaaGyxaiabgUcaRiabew7aLnaapedabeWcbaGaaGimaaqaai abes8a0bqdcqGHRiI8aOWaa8qmaeqaleaacaaIWaaabaGaamiBaaqd cqGHRiI8aOGaamOzamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG4b GaamizaiaadshacaaIUaaaaa@7818@ (20)

Заметим, что справедливо равенство

τ 0 τ 0 l (τt)( u x m (x,t )) 2 dxdt= 0 τ 0 l ( u x m (x,t)) 2 dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITaeaacqGHciITcqaHepaDaaWaa8qmaeqaleaacaaIWaaabaGa eqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaani abgUIiYdGccaaIOaGaeqiXdqNaeyOeI0IaamiDaiaaiMcacaaIOaGa amyDamaaDaaaleaacaWG4baabaGaamyBaaaakiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaaGykamaaCaaaleqabaGaaGOmaaaakiaadsga caWG4bGaamizaiaadshacaaI9aWaa8qmaeqaleaacaaIWaaabaGaeq iXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniab gUIiYdGccaaIOaGaamyDamaaDaaaleaacaWG4baabaGaamyBaaaaki aaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGykamaaCaaaleqabaGa aGOmaaaakiaadsgacaWG4bGaamizaiaadshacaaISaaaaa@6CE7@

и поэтому к (20) можно применить лемму Гронуолла [26], что приводит к неравенству:

0 l ( u m (x,τ) 2 dx+ a 0 0 τ 0 l ( u x m ) 2 dxdtε e c 2 τ 0 τ 0 l f 2 dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaGikaiaadwhadaahaaWc beqaaiaad2gaaaGccaaIOaGaamiEaiaaiYcacqaHepaDcaaIPaWaaW baaSqabeaacaaIYaaaaOGaamizaiaadIhacqGHRaWkcaWGHbWaaSba aSqaaiaaicdaaeqaaOWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhani abgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGc caaIOaGaamyDamaaDaaaleaacaWG4baabaGaamyBaaaakiaaiMcada ahaaWcbeqaaiaaikdaaaGccaWGKbGaamiEaiaadsgacaWG0bGaeyiz ImQaeqyTduMaamyzamaaCaaaleqabaGaam4yamaaBaaabaGaaGOmaa qabaGaeqiXdqhaaOWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniab gUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGcca WGMbWaaWbaaSqabeaacaaIYaaaaOGaamizaiaadIhacaWGKbGaamiD aiaaiYcaaaa@6FDC@ (21)

которое выполняется для всех m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@36E5@ и для всех τ[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaG4waiaaicdacaaISaGaamivaiaai2faaaa@3D51@ , при этом правая его часть от m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@36E5@ не зависит. Тогда для решения задачи N, которое есть слабый предел последовательности { u m (x,t)}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaadw hadaahaaWcbeqaaiaad2gaaaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiaai2hacaaISaaaaa@3EE9@ справедливо неравенство

0 l (u (x,τ) 2 dx+ a 0 0 τ 0 l u x 2 (x,t)dxdtε e c 2 τ 0 τ 0 l f 2 (x,t)dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaGikaiaadwhacaaIOaGa amiEaiaaiYcacqaHepaDcaaIPaWaaWbaaSqabeaacaaIYaaaaOGaam izaiaadIhacqGHRaWkcaWGHbWaaSbaaSqaaiaaicdaaeqaaOWaa8qm aeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaai aaicdaaeaacaWGSbaaniabgUIiYdGccaWG1bWaa0baaSqaaiaadIha aeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKb GaamiEaiaadsgacaWG0bGaeyizImQaeqyTduMaamyzamaaCaaaleqa baGaam4yamaaBaaabaGaaGOmaaqabaGaeqiXdqhaaOWaa8qmaeqale aacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicda aeaacaWGSbaaniabgUIiYdGccaWGMbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiaadsga caWG0bGaaGOlaaaa@7449@ (22)

Из последнего неравенства имеем:

0 l u 2 dxε e c 2 τ ||f || L 2 ( Q T ) 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamyDamaaCaaaleqabaGa aGOmaaaakiaadsgacaWG4bGaeyizImQaeqyTduMaamyzamaaCaaale qabaGaam4yamaaBaaabaGaaGOmaaqabaGaeqiXdqhaaOGaaGiFaiaa iYhacaWGMbGaaGiFaiaaiYhadaqhaaWcbaGaamitamaaBaaabaGaaG OmaaqabaGaaGikaiaadgfadaWgaaqaaiaadsfaaeqaaiaaiMcaaeaa caaIYaaaaOGaaGilaaaa@513B@

a 0 0 l 0 τ u x 2 dxdtε e c 2 τ ||f || L 2 ( Q T ) 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIWaaabeaakmaapedabeWcbaGaaGimaaqaaiaadYgaa0Ga ey4kIipakmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aO GaamyDamaaDaaaleaacaWG4baabaGaaGOmaaaakiaadsgacaWG4bGa amizaiaadshacqGHKjYOcqaH1oqzcaWGLbWaaWbaaSqabeaacaWGJb WaaSbaaeaacaaIYaaabeaacqaHepaDaaGccaaI8bGaaGiFaiaadAga caaI8bGaaGiFamaaDaaaleaacaWGmbWaaSbaaeaacaaIYaaabeaaca aIOaGaamyuamaaBaaabaGaamivaaqabaGaaGykaaqaaiaaikdaaaGc caaIUaaaaa@5AA5@

Интегрируя первое из них по (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaic dacaaISaGaamivaiaaiMcaaaa@39A1@ , извлекая квадратный корень, а затем складывая, получим

||u || W 2 1,0 ( Q T ) εM ||f || L 2 ( Q T ) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaaiY hacaWG1bGaaGiFaiaaiYhadaWgaaWcbaGaam4vamaaDaaabaGaaGOm aaqaaiaaigdacaaISaGaaGimaaaacaaIOaGaamyuamaaBaaabaGaam ivaaqabaGaaGykaaqabaGccqGHKjYOdaGcaaqaaiabew7aLjaad2ea aSqabaGccaaI8bGaaGiFaiaadAgacaaI8bGaaGiFamaaBaaaleaaca WGmbWaaSbaaeaacaaIYaaabeaacaaIOaGaamyuamaaBaaabaGaamiv aaqabaGaaGykaaqabaGccaaISaaaaa@517A@ (23)

где

M=max{ e c 2 T a 0 , e c 2 T 1 c 2 }. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaai2 daciGGTbGaaiyyaiaacIhacaaI7bWaaSaaaeaacaWGLbWaaWbaaSqa beaacaWGJbWaaSbaaeaacaaIYaaabeaacaWGubaaaaGcbaGaamyyam aaBaaaleaacaaIWaaabeaaaaGccaaISaWaaSaaaeaacaWGLbWaaWba aSqabeaacaWGJbWaaSbaaeaacaaIYaaabeaacaWGubaaaOGaeyOeI0 IaaGymaaqaaiaadogadaWgaaWcbaGaaGOmaaqabaaaaOGaaGyFaiaa i6caaaa@4AD0@

Вернемся к обратной задаче. Для каждого n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36E6@ функция u n (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@3C27@ является решением прямой задачи с правой частью f(x,t) r n (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaamOCamaaBaaaleaacaWGUbaa beaakiaaiIcacaWG0bGaaGykaaaa@3F6D@ , но тогда справедливо неравенство (23) и, учитывая, что max Q ¯ T |f(x,t)| k k, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aaceWGrbGbaebadaWgaaqaaiaadsfaaeqaaaqabOqaaiGac2gacaGG HbGaaiiEaaaacaaI8bGaamOzaiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaaGiFaiabgsMiJoaakaaabaGaam4AaaWcbeaakiaadUgacaaI Saaaaa@46AB@ получим

||u || W 2 1,0 ( Q T ) kM ε || r n || L 2 (0,T) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaaiY hacaWG1bGaaGiFaiaaiYhadaWgaaWcbaGaam4vamaaDaaabaGaaGOm aaqaaiaaigdacaaISaGaaGimaaaacaaIOaGaamyuamaaBaaabaGaam ivaaqabaGaaGykaaqabaGccqGHKjYOdaGcaaqaaiaadUgacaWGnbaa leqaaOWaaOaaaeaacqaH1oqzaSqabaGccaaI8bGaaGiFaiaadkhada WgaaWcbaGaamOBaaqabaGccaaI8bGaaGiFamaaBaaaleaacaWGmbWa aSbaaeaacaaIYaaabeaacaaIOaGaaGimaiaaiYcacaWGubGaaGykaa qabaGccaaIUaaaaa@543F@ (24)

Из равенства (23) следует неравенство

r n 2 (t)= 1 E 2 (t) ( 0 l u n1 (x,t)dx) 2 E 0 l 0 l u n1 2 dx, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaDa aaleaacaWGUbaabaGaaGOmaaaakiaaiIcacaWG0bGaaGykaiaai2da daWcaaqaaiaaigdaaeaacaWGfbWaaWbaaSqabeaacaaIYaaaaOGaaG ikaiaadshacaaIPaaaaiaaiIcadaWdXaqabSqaaiaaicdaaeaacaWG SbaaniabgUIiYdGccaWG1bWaaSbaaSqaaiaad6gacqGHsislcaaIXa aabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIha caaIPaWaaWbaaSqabeaacaaIYaaaaOGaeyizImQaamyramaaBaaale aacaaIWaaabeaakiaadYgadaWdXaqabSqaaiaaicdaaeaacaWGSbaa niabgUIiYdGccaWG1bWaa0baaSqaaiaad6gacqGHsislcaaIXaaaba GaaGOmaaaakiaadsgacaWG4bGaaGilaaaa@6037@

интегрируя которое получим

0 T r n 2 (t)dt E 0 l 0 T 0 l u n1 2 dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamOCamaaDaaaleaacaWG UbaabaGaaGOmaaaakiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaey izImQaamyramaaBaaaleaacaaIWaaabeaakiaadYgadaWdXaqabSqa aiaaicdaaeaacaWGubaaniabgUIiYdGcdaWdXaqabSqaaiaaicdaae aacaWGSbaaniabgUIiYdGccaWG1bWaa0baaSqaaiaad6gacqGHsisl caaIXaaabaGaaGOmaaaakiaadsgacaWG4bGaamizaiaadshacaaIUa aaaa@55E5@

откуда следует неравенство

|| r n || L 2 ( Q T ) E 0 l || u n1 || W 2 1,0 ( Q T ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaaiY hacaWGYbWaaSbaaSqaaiaad6gaaeqaaOGaaGiFaiaaiYhadaWgaaWc baGaamitamaaBaaabaGaaGOmaaqabaGaaGikaiaadgfadaWgaaqaai aadsfaaeqaaiaaiMcaaeqaaOGaeyizIm6aaOaaaeaacaWGfbWaaSba aSqaaiaaicdaaeqaaOGaamiBaaWcbeaakiaaiYhacaaI8bGaamyDam aaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaaI8bGaaGiFamaa BaaaleaacaWGxbWaa0baaeaacaaIYaaabaGaaGymaiaaiYcacaaIWa aaaiaaiIcacaWGrbWaaSbaaeaacaWGubaabeaacaaIPaaabeaakiaa i6caaaa@55B4@ (25)

Из (24) и (25) следует:

|| u n || W 2 1,0 ( Q T ) kM ε E 0 l || u n1 || W 2 1,0 ( Q T ) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaaiY hacaWG1bWaaSbaaSqaaiaad6gaaeqaaOGaaGiFaiaaiYhadaWgaaWc baGaam4vamaaDaaabaGaaGOmaaqaaiaaigdacaaISaGaaGimaaaaca aIOaGaamyuamaaBaaabaGaamivaaqabaGaaGykaaqabaGccqGHKjYO daGcaaqaaiaadUgacaWGnbaaleqaaOWaaOaaaeaacqaH1oqzaSqaba GcdaGcaaqaaiaadweadaWgaaWcbaGaaGimaaqabaGccaWGSbaaleqa aOGaaGiFaiaaiYhacaWG1bWaaSbaaSqaaiaad6gacqGHsislcaaIXa aabeaakiaaiYhacaaI8bWaaSbaaSqaaiaadEfadaqhaaqaaiaaikda aeaacaaIXaGaaGilaiaaicdaaaGaaGikaiaadgfadaWgaaqaaiaads faaeqaaiaaiMcaaeqaaOGaaGilaaaa@5B9F@

|| r n || L 2 (0,T) kM ε E 0 l || r n1 || L 2 ((0,T) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaaiY hacaWGYbWaaSbaaSqaaiaad6gaaeqaaOGaaGiFaiaaiYhadaWgaaWc baGaamitamaaBaaabaGaaGOmaaqabaGaaGikaiaaicdacaaISaGaam ivaiaaiMcaaeqaaOGaeyizIm6aaOaaaeaacaWGRbGaamytaaWcbeaa kmaakaaabaGaeqyTdugaleqaaOWaaOaaaeaacaWGfbWaaSbaaSqaai aaicdaaeqaaOGaamiBaaWcbeaakiaaiYhacaaI8bGaamOCamaaBaaa leaacaWGUbGaeyOeI0IaaGymaaqabaGccaaI8bGaaGiFamaaBaaale aacaWGmbWaaSbaaeaacaaIYaaabeaacaaIOaGaaGikaiaaicdacaaI SaGaamivaiaaiMcaaeqaaOGaaGOlaaaa@58D1@

Обозначим

s= Mk E 0 l . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiaai2 dadaGcaaqaaiaad2eacaWGRbGaamyramaaBaaaleaacaaIWaaabeaa kiaadYgaaSqabaGccaaIUaaaaa@3CFC@

Тогда

|| u n || W 2 1,0 ( Q T ) s ε || u n1 || W 2 1,0 ( Q T ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaaiY hacaWG1bWaaSbaaSqaaiaad6gaaeqaaOGaaGiFaiaaiYhadaWgaaWc baGaam4vamaaDaaabaGaaGOmaaqaaiaaigdacaaISaGaaGimaaaaca aIOaGaamyuamaaBaaabaGaamivaaqabaGaaGykaaqabaGccqGHKjYO caWGZbWaaOaaaeaacqaH1oqzaSqabaGccaaI8bGaaGiFaiaadwhada WgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaaGiFaiaaiYhadaWg aaWcbaGaam4vamaaDaaabaGaaGOmaaqaaiaaigdacaaISaGaaGimaa aacaaIOaGaamyuamaaBaaabaGaamivaaqabaGaaGykaaqabaGccaaI Uaaaaa@57E2@ (26)

|| r n || L 2 ((0,T)) s ε || r n1 || L 2 (0,T) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaaiY hacaWGYbWaaSbaaSqaaiaad6gaaeqaaOGaaGiFaiaaiYhadaWgaaWc baGaamitamaaBaaabaGaaGOmaaqabaGaaGikaiaaiIcacaaIWaGaaG ilaiaadsfacaaIPaGaaGykaaqabaGccqGHKjYOcaWGZbWaaOaaaeaa cqaH1oqzaSqabaGccaaI8bGaaGiFaiaadkhadaWgaaWcbaGaamOBai abgkHiTiaaigdaaeqaaOGaaGiFaiaaiYhadaWgaaWcbaGaamitamaa BaaabaGaaGOmaaqabaGaaGikaiaaicdacaaISaGaamivaiaaiMcaae qaaOGaaGOlaaaa@55C5@ (27)

Выберем ε MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdugaaa@379A@ так, чтобы s ε <1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Camaaka aabaGaeqyTdugaleqaaOGaaGipaiaaigdaaaa@3A38@ . Тогда (26) и (27) образуют бесконечно убывающие геометрические прогрессии, а значит, сходятся при n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgk ziUkabg6HiLcaa@3A44@ . Из этого следует, что обе последовательности { u n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaadw hadaWgaaWcbaGaamOBaaqabaGccaaI9baaaa@3A22@ и { r n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaadk hadaWgaaWcbaGaamOBaaqabaGccaaI9baaaa@3A1F@ сходятся по норме в соответствующих пространствах, и предел каждой последовательности единственный. Но из сильной сходимости (по норме) следует слабая сходимость. Переходя к пределу в (14) и (15), получаем, что предельные функции u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3AFE@ и r(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGykaaaa@3948@ образуют решение задачи R.

Покажем теперь, что некоторые дополнительные условия гарантируют принадлежность u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI Giodaa@3871@ W 2 1,1 Q T ,r W 2 1 (0,T). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyicI4Saam 4vamaaDaaaleaacaaIYaaabaGaaGymaiaaiYcacaaIXaaaaOGaamyu amaaBaaaleaacaWGubaabeaakiaaiYcacaaMe8UaaGjbVlaadkhacq GHiiIZcaWGxbWaa0baaSqaaiaaikdaaeaacaaIXaaaaOGaaGikaiaa icdacaaISaGaamivaiaaiMcacaaIUaaaaa@4A92@

Лемма 2. Условия теоремы 1 гарантируют принадлежность решения задачи R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaaaa@36CA@ пространству W 2 1,1 ( Q T ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaaIYaaabaGaaGymaiaaiYcacaaIXaaaaOGaaGikaiaadgfa daWgaaWcbaGaamivaaqabaGccaaIPaGaaGOlaaaa@3DF0@

Доказательство. Так как каждое приближенное решение u n (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@3C27@ задачи R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaaaa@36CA@ определяется через решение прямой задачи N, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaaiY caaaa@377C@ то достаточно показать, что решение прямой задачи принадлежит W 2 1,1 ( Q T ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaaIYaaabaGaaGymaiaaiYcacaaIXaaaaOGaaGikaiaadgfa daWgaaWcbaGaamivaaqabaGccaaIPaGaaGOlaaaa@3DF0@ Умножим каждое из равенств (16) на c im '(t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGPbGaamyBaaqabaGccaaINaGaaGikaiaadshacaaIPaGa aGilaaaa@3CB6@ просуммируем по i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E1@ от 1 до m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@36E5@ , а затем проинтегрируем по t(0,τ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiIcacaaIWaGaaGilaiabes8a0jaaiMcacaaIUaaaaa@3DC2@ Получим

0 τ 0 l [( u t m ) 2 +a u x m u xt m +c u m u t m ]dxdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicda aeaacaWGSbaaniabgUIiYdGccaaIBbGaaGikaiaadwhadaqhaaWcba GaamiDaaqaaiaad2gaaaGccaaIPaWaaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaamyyaiaadwhadaqhaaWcbaGaamiEaaqaaiaad2gaaaGcca WG1bWaa0baaSqaaiaadIhacaWG0baabaGaamyBaaaakiabgUcaRiaa dogacaWG1bWaaWbaaSqabeaacaWGTbaaaOGaamyDamaaDaaaleaaca WG0baabaGaamyBaaaakiaai2facaWGKbGaamiEaiaadsgacaWG0bGa eyOeI0caaa@5A84@

0 τ u t m (0,t)[ α 1 (t) u t m (0,t)+ β 1 (t) u t m (l,t)+ 0 l H 1 (x,t) u m (x,t)dx]dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG1bWaa0ba aSqaaiaadshaaeaacaWGTbaaaOGaaGikaiaaicdacaaISaGaamiDai aaiMcacaaIBbGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiaa dshacaaIPaGaamyDamaaDaaaleaacaWG0baabaGaamyBaaaakiaaiI cacaaIWaGaaGilaiaadshacaaIPaGaey4kaSIaeqOSdi2aaSbaaSqa aiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaamyDamaaDaaaleaaca WG0baabaGaamyBaaaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGa ey4kaSYaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam isamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaamizaiaadIhacaaIDbGaamizaiaadshacqGH RaWkaaa@7282@

+ 0 τ u t m (l,t)[ α 2 (t) u m (0,t)+ β 2 (t) u m (l,t+) 0 l H 2 (x,t) u m (x,t)dx]dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG1bWaa0ba aSqaaiaadshaaeaacaWGTbaaaOGaaGikaiaadYgacaaISaGaamiDai aaiMcacaaIBbGaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaa dshacaaIPaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaaIWa GaaGilaiaadshacaaIPaGaey4kaSIaeqOSdi2aaSbaaSqaaiaaikda aeqaaOGaaGikaiaadshacaaIPaGaamyDamaaCaaaleqabaGaamyBaa aakiaaiIcacaWGSbGaaGilaiaadshacqGHRaWkcaaIPaWaa8qmaeqa leaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamisamaaBaaaleaaca aIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamyDamaa CaaaleqabaGaamyBaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaamizaiaadIhacaaIDbGaamizaiaadshacaaI9aaaaa@70A4@

= 0 τ 0 l f(x,t) u t m (x,t)dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaa caaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaamyDamaaDaaaleaacaWG0baabaGaamyBaaaa kiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhacaWGKb GaamiDaiaai6caaaa@4FF5@ (28)

Преобразуем (28), интегрируя некоторые из слагаемых.

1) 0 τ 0 l a u x m u xt m dxdt= 1 2 0 τ 0 l a t ( u x m ) 2 dxdt+ 1 2 0 l a( u x m (x,τ) 2 dx; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiM cacaaMe8UaaGjbVpaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGH RiI8aOWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam yyaiaadwhadaqhaaWcbaGaamiEaaqaaiaad2gaaaGccaWG1bWaa0ba aSqaaiaadIhacaWG0baabaGaamyBaaaakiaadsgacaWG4bGaamizai aadshacaaI9aGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaadaWd XaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakmaapedabeWcba GaaGimaaqaaiaadYgaa0Gaey4kIipakiaadggadaWgaaWcbaGaamiD aaqabaGccaaIOaGaamyDamaaDaaaleaacaWG4baabaGaamyBaaaaki aaiMcadaahaaWcbeqaaiaaikdaaaGccaWGKbGaamiEaiaadsgacaWG 0bGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXaqabSqaai aaicdaaeaacaWGSbaaniabgUIiYdGccaWGHbGaaGikaiaadwhadaqh aaWcbaGaamiEaaqaaiaad2gaaaGccaaIOaGaamiEaiaaiYcacqaHep aDcaaIPaWaaWbaaSqabeaacaaIYaaaaOGaamizaiaadIhacaaI7aGa aGzbVlaaywW7daWgaaWcbaaabeaakiaaywW7caaMf8+aaSbaaSqaaa qabaGccaaMf8+aaSbaaSqaaaqabaaaaa@81EF@

2) 0 τ α 1 (t) u t m (0,t) u m (0,t)dt= 1 2 0 τ α (t)( u m (0,t )) 2 dt 1 2 α 1 (τ)( u m (0,τ )) 2 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiM cacaaMe8UaaGjbVlabgkHiTmaapedabeWcbaGaaGimaaqaaiabes8a 0bqdcqGHRiI8aOGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaGikai aadshacaaIPaGaamyDamaaDaaaleaacaWG0baabaGaamyBaaaakiaa iIcacaaIWaGaaGilaiaadshacaaIPaGaamyDamaaCaaaleqabaGaam yBaaaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamizaiaadsha caaI9aWaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXaqabSqaaiaaic daaeaacqaHepaDa0Gaey4kIipakiqbeg7aHzaafaGaaGikaiaadsha caaIPaGaaGikaiaadwhadaahaaWcbeqaaiaad2gaaaGccaaIOaGaaG imaiaaiYcacaWG0bGaaGykaiaaiMcadaahaaWcbeqaaiaaikdaaaGc caWGKbGaamiDaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaeq ySde2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiabes8a0jaaiMcacaaI OaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaaIWaGaaGilai abes8a0jaaiMcacaaIPaWaaWbaaSqabeaacaaIYaaaaOGaaG4oaiaa ywW7daWgaaWcbaaabeaaaaa@7CBE@

3) 0 τ α 2 (t) u m (0,t) u t m (l,t)dt= 0 τ α 2 (t) u t m (0,t) u m (l,t)dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaaiM cacaaMe8UaaGjbVpaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGH RiI8aOGaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshaca aIPaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaaIWaGaaGil aiaadshacaaIPaGaamyDamaaDaaaleaacaWG0baabaGaamyBaaaaki aaiIcacaWGSbGaaGilaiaadshacaaIPaGaamizaiaadshacaaI9aGa eyOeI0Yaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccq aHXoqydaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiMcacaWG 1bWaa0baaSqaaiaadshaaeaacaWGTbaaaOGaaGikaiaaicdacaaISa GaamiDaiaaiMcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGaaGikaiaa dYgacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiabgkHiTiaaywW7da WgaaWcbaaabeaakiaaywW7caaMf8+aaSbaaSqaaaqabaGccaaMf8Ua aGzbVlaaywW7caaMf8UaaGzbVpaaBaaaleaaaeqaaaaa@7B52@

0 τ α 2 u m (0,t) u m (l,t)dt+ α 2 (τ) u m (0,τ) u m (l,τ); MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccuaHXoqygaqb amaaBaaaleaacaaIYaaabeaakiaadwhadaahaaWcbeqaaiaad2gaaa GccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaadwhadaahaaWcbeqa aiaad2gaaaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiaadsgaca WG0bGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiab es8a0jaaiMcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGaaGikaiaaic dacaaISaGaeqiXdqNaaGykaiaadwhadaahaaWcbeqaaiaad2gaaaGc caaIOaGaamiBaiaaiYcacqaHepaDcaaIPaGaaG4oaaaa@613E@

4) 0 τ β 2 (t) u t m (l,t) u m (l,t)dt= 1 2 0 τ β 2 (t)( u m (l,t )) 2 dt+ 1 2 β 2 (τ)( u m (l,τ )) 2 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaaiM cacaaMe8UaaGjbVpaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGH RiI8aOGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshaca aIPaGaamyDamaaDaaaleaacaWG0baabaGaamyBaaaakiaaiIcacaWG SbGaaGilaiaadshacaaIPaGaamyDamaaCaaaleqabaGaamyBaaaaki aaiIcacaWGSbGaaGilaiaadshacaaIPaGaamizaiaadshacaaI9aGa eyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXaqabSqaaiaaic daaeaacqaHepaDa0Gaey4kIipakiqbek7aIzaafaWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadshacaaIPaGaaGikaiaadwhadaahaaWcbe qaaiaad2gaaaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiaaiMca daahaaWcbeqaaiaaikdaaaGccaWGKbGaamiDaiabgUcaRmaalaaaba GaaGymaaqaaiaaikdaaaGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGa aGikaiabes8a0jaaiMcacaaIOaGaamyDamaaCaaaleqabaGaamyBaa aakiaaiIcacaWGSbGaaGilaiabes8a0jaaiMcacaaIPaWaaWbaaSqa beaacaaIYaaaaOGaaG4oaiaaywW7caaMf8+aaSbaaSqaaaqabaaaaa@8019@

5) 0 τ u t m (0,t) 0 l H 1 (x,t) u m (x,t)dxdt= 0 τ u m (0,t) 0 l H 1 (x,t) u t m (x,t)dxdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynaiaaiM cacaaMe8UaaGjbVlabgkHiTmaapedabeWcbaGaaGimaaqaaiabes8a 0bqdcqGHRiI8aOGaamyDamaaDaaaleaacaWG0baabaGaamyBaaaaki aaiIcacaaIWaGaaGilaiaadshacaaIPaWaa8qmaeqaleaacaaIWaaa baGaamiBaaqdcqGHRiI8aOGaamisamaaBaaaleaacaaIXaaabeaaki aaiIcacaWG4bGaaGilaiaadshacaaIPaGaamyDamaaCaaaleqabaGa amyBaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadI hacaWGKbGaamiDaiaai2dadaWdXaqabSqaaiaaicdaaeaacqaHepaD a0Gaey4kIipakiaadwhadaahaaWcbeqaaiaad2gaaaGccaaIOaGaaG imaiaaiYcacaWG0bGaaGykamaapedabeWcbaGaaGimaaqaaiaadYga a0Gaey4kIipakiaadIeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaam iEaiaaiYcacaWG0bGaaGykaiaadwhadaqhaaWcbaGaamiDaaqaaiaa d2gaaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4b GaamizaiaadshacqGHRaWkaaa@7BA3@

+ 0 τ u m (0,t) 0 l H 1t (x,t) u m (x,t)dxdt u m (0,τ) 0 l H 1 (x,τ) u m (x,τ)dx; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG1bWaaWba aSqabeaacaWGTbaaaOGaaGikaiaaicdacaaISaGaamiDaiaaiMcada WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSba aSqaaiaaigdacaWG0baabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamizaiaadIhacaWGKbGaamiDaiabgkHiTiaadw hadaahaaWcbeqaaiaad2gaaaGccaaIOaGaaGimaiaaiYcacqaHepaD caaIPaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam isamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiabes8a 0jaaiMcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGaaGikaiaadIhaca aISaGaeqiXdqNaaGykaiaadsgacaWG4bGaaG4oaaaa@71EB@

6) 0 τ u t m (l,t) 0 l H 2 (x,t) u m (x,t)dxdt= 0 τ u m (l,t) 0 l H 2 (x,t) u t m (x,t)dxdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaiM cacaaMe8UaaGjbVlabgkHiTmaapedabeWcbaGaaGimaaqaaiabes8a 0bqdcqGHRiI8aOGaamyDamaaDaaaleaacaWG0baabaGaamyBaaaaki aaiIcacaWGSbGaaGilaiaadshacaaIPaWaa8qmaeqaleaacaaIWaaa baGaamiBaaqdcqGHRiI8aOGaamisamaaBaaaleaacaaIYaaabeaaki aaiIcacaWG4bGaaGilaiaadshacaaIPaGaamyDamaaCaaaleqabaGa amyBaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadI hacaWGKbGaamiDaiaai2dadaWdXaqabSqaaiaaicdaaeaacqaHepaD a0Gaey4kIipakiaadwhadaahaaWcbeqaaiaad2gaaaGccaaIOaGaam iBaiaaiYcacaWG0bGaaGykamaapedabeWcbaGaaGimaaqaaiaadYga a0Gaey4kIipakiaadIeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam iEaiaaiYcacaWG0bGaaGykaiaadwhadaqhaaWcbaGaamiDaaqaaiaa d2gaaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4b GaamizaiaadshacqGHRaWkaaa@7C14@

+ 0 τ u m (l,t) 0 l H 2t (x,t) u m (x,t)dxdt u m (l,τ) 0 l H 2 (x,τ) u m (x,τ)dx. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG1bWaaWba aSqabeaacaWGTbaaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcada WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSba aSqaaiaaikdacaWG0baabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamizaiaadIhacaWGKbGaamiDaiabgkHiTiaadw hadaahaaWcbeqaaiaad2gaaaGccaaIOaGaamiBaiaaiYcacqaHepaD caaIPaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam isamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiabes8a 0jaaiMcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGaaGikaiaadIhaca aISaGaeqiXdqNaaGykaiaadsgacaWG4bGaaGOlaaaa@724E@

Подставим полученные выражения в (28), учтя условие α 2 (t)+ β 1 (t)=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaey4kaSIaeqOS di2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaaGypai aaicdacaaIUaaaaa@42ED@

0 τ 0 l [( u t m ) 2 + 1 2 0 l a( u x m (x,τ) 2 dx= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicda aeaacaWGSbaaniabgUIiYdGccaaIBbGaaGikaiaadwhadaqhaaWcba GaamiDaaqaaiaad2gaaaGccaaIPaWaaWbaaSqabeaacaaIYaaaaOGa ey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXaqabSqaaiaaic daaeaacaWGSbaaniabgUIiYdGccaWGHbGaaGikaiaadwhadaqhaaWc baGaamiEaaqaaiaad2gaaaGccaaIOaGaamiEaiaaiYcacqaHepaDca aIPaWaaWbaaSqabeaacaaIYaaaaOGaamizaiaadIhacaaI9aaaaa@585B@

= 1 2 0 τ 0 l a t ( u x m ) 2 dxdt 0 τ 0 l c u m u t m dxdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaala aabaGaaGymaaqaaiaaikdaaaWaa8qmaeqaleaacaaIWaaabaGaeqiX dqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgU IiYdGccaWGHbWaaSbaaSqaaiaadshaaeqaaOGaaGikaiaadwhadaqh aaWcbaGaamiEaaqaaiaad2gaaaGccaaIPaWaaWbaaSqabeaacaaIYa aaaOGaamizaiaadIhacaWGKbGaamiDaiabgkHiTmaapedabeWcbaGa aGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaacaaIWaaaba GaamiBaaqdcqGHRiI8aOGaam4yaiaadwhadaahaaWcbeqaaiaad2ga aaGccaWG1bWaa0baaSqaaiaadshaaeaacaWGTbaaaOGaamizaiaadI hacaWGKbGaamiDaiabgkHiTaaa@6083@

1 2 0 τ α 1 (t)( u m (0,t )) 2 dt+ 1 2 0 τ β 2 (t)( u m (l,t )) 2 dt+ 0 tau α 2 (t) u m (0,t) u m (l,t)dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaIXaaabaGaaGOmaaaadaWdXaqabSqaaiaaicdaaeaacqaH epaDa0Gaey4kIipakiqbeg7aHzaafaWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaGaaGikaiaadwhadaahaaWcbeqaaiaad2ga aaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaaiMcadaahaaWcbe qaaiaaikdaaaGccaWGKbGaamiDaiabgUcaRmaalaaabaGaaGymaaqa aiaaikdaaaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYd GccqaHYoGydaWgaaWcbaGabGOmayaafaaabeaakiaaiIcacaWG0bGa aGykaiaaiIcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGaaGikaiaadY gacaaISaGaamiDaiaaiMcacaaIPaWaaWbaaSqabeaacaaIYaaaaOGa amizaiaadshacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWG0bGaam yyaiaadwhaa0Gaey4kIipakiqbeg7aHzaafaWaaSbaaSqaaiaaikda aeqaaOGaaGikaiaadshacaaIPaGaamyDamaaCaaaleqabaGaamyBaa aakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamyDamaaCaaaleqa baGaamyBaaaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaamizai aadshacqGHRaWkaaa@7D3B@

+ 1 2 α 1 (τ)( u m (0,τ )) 2 α 2 (τ) u m (0,τ) u m (l,τ) 1 2 β 2 (τ)( u m (l,τ )) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaS aaaeaacaaIXaaabaGaaGOmaaaacqaHXoqydaWgaaWcbaGaaGymaaqa baGccaaIOaGaeqiXdqNaaGykaiaaiIcacaWG1bWaaWbaaSqabeaaca WGTbaaaOGaaGikaiaaicdacaaISaGaeqiXdqNaaGykaiaaiMcadaah aaWcbeqaaiaaikdaaaGccqGHsislcqaHXoqydaWgaaWcbaGaaGOmaa qabaGccaaIOaGaeqiXdqNaaGykaiaadwhadaahaaWcbeqaaiaad2ga aaGccaaIOaGaaGimaiaaiYcacqaHepaDcaaIPaGaamyDamaaCaaale qabaGaamyBaaaakiaaiIcacaWGSbGaaGilaiabes8a0jaaiMcacqGH sisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabek7aInaaBaaaleaaca aIYaaabeaakiaaiIcacqaHepaDcaaIPaGaaGikaiaadwhadaahaaWc beqaaiaad2gaaaGccaaIOaGaamiBaiaaiYcacqaHepaDcaaIPaGaaG ykamaaCaaaleqabaGaaGOmaaaakiabgkHiTaaa@6DEE@

0 τ u m (0,t) 0 l H 1 (x,t) u t m (x,t)dxdt 0 τ u m (0,t) 0 l H 1t (x,t) u m (x,t)dxdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG1bWaaWba aSqabeaacaWGTbaaaOGaaGikaiaaicdacaaISaGaamiDaiaaiMcada WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSba aSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca WG1bWaa0baaSqaaiaadshaaeaacaWGTbaaaOGaaGikaiaadIhacaaI SaGaamiDaiaaiMcacaWGKbGaamiEaiaadsgacaWG0bGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG1bWaaWba aSqabeaacaWGTbaaaOGaaGikaiaaicdacaaISaGaamiDaiaaiMcada WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSba aSqaaiaaigdacaWG0baabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamizaiaadIhacaWGKbGaamiDaiabgUcaRaaa@773D@

+ u m (0,τ) 0 l H 1 (x,τ) u m (x,τ)dx+ 0 τ u m (l,t) 0 l H 2 (x,t) u t m (x,t)dxdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaam yDamaaCaaaleqabaGaamyBaaaakiaaiIcacaaIWaGaaGilaiabes8a 0jaaiMcadaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGcca WGibWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaeqiX dqNaaGykaiaadwhadaahaaWcbeqaaiaad2gaaaGccaaIOaGaamiEai aaiYcacqaHepaDcaaIPaGaamizaiaadIhacqGHRaWkdaWdXaqabSqa aiaaicdaaeaacqaHepaDa0Gaey4kIipakiaadwhadaahaaWcbeqaai aad2gaaaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykamaapedabeWc baGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadIeadaWgaaWcbaGaaG OmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhadaqh aaWcbaGaamiDaaqaaiaad2gaaaGccaaIOaGaamiEaiaaiYcacaWG0b GaaGykaiaadsgacaWG4bGaamizaiaadshacqGHsislaaa@7240@

0 τ u m (l,t) 0 l H 2t (x,t) u m (x,t)dxdt+ u m (l,τ) 0 l H 2 (x,τ) u m (x,τ)dx+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG1bWaaWba aSqabeaacaWGTbaaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcada WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSba aSqaaiaaikdacaWG0baabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamizaiaadIhacaWGKbGaamiDaiabgUcaRiaadw hadaahaaWcbeqaaiaad2gaaaGccaaIOaGaamiBaiaaiYcacqaHepaD caaIPaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam isamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiabes8a 0jaaiMcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGaaGikaiaadIhaca aISaGaeqiXdqNaaGykaiaadsgacaWG4bGaey4kaScaaa@7278@

+ 0 τ 0 l f(x,t) u t m (x,t)dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqa aiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGMbGaaGikaiaadIhaca aISaGaamiDaiaaiMcacaWG1bWaa0baaSqaaiaadshaaeaacaWGTbaa aOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiaads gacaWG0bGaaGOlaaaa@5010@ (29)

Оценим правую часть равенства (29), учитывая условие теоремы α 1 (t) ξ 2 2 α 2 (t)ξη β 2 (t) η 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaeqOVdG3aaWba aSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiabeg7aHnaaBaaaleaaca aIYaaabeaakiaaiIcacaWG0bGaaGykaiabe67a4jabeE7aOjabgkHi Tiabek7aInaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykai abeE7aOnaaCaaaleqabaGaaGOmaaaakiabgsMiJkaaicdaaaa@528A@ и применяя неравенства Коши, Коши с ε, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ilaaaa@3850@ Коши MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ Буняковского:

| 0 τ 0 l c u m u t m dxdt| ε 2 0 τ 0 l ( u t m ) 2 + c 0 2 2ε 0 τ 0 l ( u m ) 2 dxdt; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaape dabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaa caaIWaaabaGaamiBaaqdcqGHRiI8aOGaam4yaiaadwhadaahaaWcbe qaaiaad2gaaaGccaWG1bWaa0baaSqaaiaadshaaeaacaWGTbaaaOGa amizaiaadIhacaWGKbGaamiDaiaaiYhacqGHKjYOdaWcaaqaaiabew 7aLbqaaiaaikdaaaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniab gUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGcca aIOaGaamyDamaaDaaaleaacaWG0baabaGaamyBaaaakiaaiMcadaah aaWcbeqaaiaaikdaaaGccqGHRaWkdaWcaaqaaiaadogadaqhaaWcba GaaGimaaqaaiaaikdaaaaakeaacaaIYaGaeqyTdugaamaapedabeWc baGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaacaaIWa aabaGaamiBaaqdcqGHRiI8aOGaaGikaiaadwhadaahaaWcbeqaaiaa d2gaaaGccaaIPaWaaWbaaSqabeaacaaIYaaaaOGaamizaiaadIhaca WGKbGaamiDaiaaiUdaaaa@7432@

| 0 τ u m (0,t) 0 l H 1 u t m dxdt| h 0 2 ε 0 τ 0 l ( u t m ) 2 dxdt+ 1 2ε 0 τ ( u m (0,t)) 2 dt; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaape dabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaamyDamaaCaaa leqabaGaamyBaaaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaWaa8 qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamisamaaBaaa leaacaaIXaaabeaakiaadwhadaqhaaWcbaGaamiDaaqaaiaad2gaaa GccaWGKbGaamiEaiaadsgacaWG0bGaaGiFaiabgsMiJoaalaaabaGa amiAamaaBaaaleaacaaIWaaabeaaaOqaaiaaikdaaaGaeqyTdu2aa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqa aiaaicdaaeaacaWGSbaaniabgUIiYdGccaaIOaGaamyDamaaDaaale aacaWG0baabaGaamyBaaaakiaaiMcadaahaaWcbeqaaiaaikdaaaGc caWGKbGaamiEaiaadsgacaWG0bGaey4kaSYaaSaaaeaacaaIXaaaba GaaGOmaiabew7aLbaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Ga ey4kIipakiaaiIcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGaaGikai aaicdacaaISaGaamiDaiaaiMcacaaIPaWaaWbaaSqabeaacaaIYaaa aOGaamizaiaadshacaaI7aaaaa@7AAA@

| 0 τ u m (l,t) 0 l H 2 u t m dxdt| h 0 2 ε 0 τ 0 l ( u t m ) 2 dxdt+ 1 2ε 0 τ ( u m (l,t)) 2 dt; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaape dabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaamyDamaaCaaa leqabaGaamyBaaaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaWaa8 qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamisamaaBaaa leaacaaIYaaabeaakiaadwhadaqhaaWcbaGaamiDaaqaaiaad2gaaa GccaWGKbGaamiEaiaadsgacaWG0bGaaGiFaiabgsMiJoaalaaabaGa amiAamaaBaaaleaacaaIWaaabeaaaOqaaiaaikdaaaGaeqyTdu2aa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqa aiaaicdaaeaacaWGSbaaniabgUIiYdGccaaIOaGaamyDamaaDaaale aacaWG0baabaGaamyBaaaakiaaiMcadaahaaWcbeqaaiaaikdaaaGc caWGKbGaamiEaiaadsgacaWG0bGaey4kaSYaaSaaaeaacaaIXaaaba GaaGOmaiabew7aLbaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Ga ey4kIipakiaaiIcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGaaGikai aadYgacaaISaGaamiDaiaaiMcacaaIPaWaaWbaaSqabeaacaaIYaaa aOGaamizaiaadshacaaI7aaaaa@7B19@

| 0 τ 0 l f(x,t) u t m (x,t)dxdt| ε 2 0 τ 0 l ( u t m ) 2 dxdt+ 1 2ε 0 τ 0 l f 2 (x,t)dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaape dabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaa caaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaamyDamaaDaaaleaacaWG0baabaGaamyBaaaa kiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhacaWGKb GaamiDaiaaiYhacqGHKjYOdaWcaaqaaiabew7aLbqaaiaaikdaaaWa a8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabS qaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaaIOaGaamyDamaaDaaa leaacaWG0baabaGaamyBaaaakiaaiMcadaahaaWcbeqaaiaaikdaaa GccaWGKbGaamiEaiaadsgacaWG0bGaey4kaSYaaSaaaeaacaaIXaaa baGaaGOmaiabew7aLbaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0 Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipa kiaadAgadaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaadsgacaWG4bGaamizaiaadshacaaIUaaaaa@7D89@

Слагаемые, содержащие следы решения на x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIWaaaaa@3871@ и на x=l, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaWGSbGaaGilaaaa@395E@ оценим с помощью неравенств

u 2 ( ξ i ,t)2l 0 l u x 2 dx+ 2 l 0 l u 2 dx, ξ 0 =0, ξ 1 =l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGOmaaaakiaaiIcacqaH+oaEdaWgaaWcbaGaamyAaaqa baGccaaISaGaamiDaiaaiMcacqGHKjYOcaaIYaGaamiBamaapedabe WcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadwhadaqhaaWcbaGa amiEaaqaaiaaikdaaaGccaWGKbGaamiEaiabgUcaRmaalaaabaGaaG OmaaqaaiaadYgaaaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGH RiI8aOGaamyDamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG4bGaaG ilaiaaysW7caaMe8UaeqOVdG3aaSbaaSqaaiaaicdaaeqaaOGaaGyp aiaaicdacaaISaGaaGjbVlabe67a4naaBaaaleaacaaIXaaabeaaki aai2dacaWGSbaaaa@62F0@

и получим

0 τ ( u m (0,t)) 2 dt2l 0 τ 0 l ( u x m (x,t)) 2 dxdt+ 2 l 0 τ 0 l ( u m (x,t)) 2 dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaaIOaGaamyDamaaCaaa leqabaGaamyBaaaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaaG ykamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG0bGaeyizImQaaGOm aiaadYgadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakm aapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiIcacaWG 1bWaa0baaSqaaiaadIhaaeaacaWGTbaaaOGaaGikaiaadIhacaaISa GaamiDaiaaiMcacaaIPaWaaWbaaSqabeaacaaIYaaaaOGaamizaiaa dIhacaWGKbGaamiDaiabgUcaRmaalaaabaGaaGOmaaqaaiaadYgaaa Waa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqa bSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaaIOaGaamyDamaaCa aaleqabaGaamyBaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGykamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG4bGaamizaiaads hacaaISaaaaa@7651@

0 τ ( u m (l,t)) 2 dt2l 0 τ 0 l ( u x m (x,t)) 2 dxdt+ 2 l 0 τ 0 l ( u m (x,t)) 2 dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaaIOaGaamyDamaaCaaa leqabaGaamyBaaaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaaG ykamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG0bGaeyizImQaaGOm aiaadYgadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakm aapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiIcacaWG 1bWaa0baaSqaaiaadIhaaeaacaWGTbaaaOGaaGikaiaadIhacaaISa GaamiDaiaaiMcacaaIPaWaaWbaaSqabeaacaaIYaaaaOGaamizaiaa dIhacaWGKbGaamiDaiabgUcaRmaalaaabaGaaGOmaaqaaiaadYgaaa Waa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqa bSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaaIOaGaamyDamaaCa aaleqabaGaamyBaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGykamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG4bGaamizaiaads hacaaIUaaaaa@768A@

Выберем ε MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdugaaa@379A@ так, чтобы ν=1( h 0 + 3 2 )ε>0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaigdacqGHsislcaaIOaGaamiAamaaBaaaleaacaaIWaaabeaa kiabgUcaRmaalaaabaGaaG4maaqaaiaaikdaaaGaaGykaiabew7aLj aai6dacaaIWaGaaGOlaaaa@43A8@ Теперь из (29) следует неравенство

ν 0 τ 0 l ( u t m ) 2 dxdt+ 1 2 0 l a( u x m (x,τ) 2 dx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd42aa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqa aiaaicdaaeaacaWGSbaaniabgUIiYdGccaaIOaGaamyDamaaDaaale aacaWG0baabaGaamyBaaaakiaaiMcadaahaaWcbeqaaiaaikdaaaGc caWGKbGaamiEaiaadsgacaWG0bGaey4kaSYaaSaaaeaacaaIXaaaba GaaGOmaaaadaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGc caWGHbGaaGikaiaadwhadaqhaaWcbaGaamiEaaqaaiaad2gaaaGcca aIOaGaamiEaiaaiYcacqaHepaDcaaIPaWaaWbaaSqabeaacaaIYaaa aOGaamizaiaadIhacqGHKjYOaaa@5DE4@

μ 0 τ 0 l [( u m (x,t )) 2 + ( u x m (x,t)) 2 ]dxdt+ 1 2ε 0 τ 0 l f 2 (x,t)dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaeq iVd02aa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWd XaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaaIBbGaaGikai aadwhadaahaaWcbeqaaiaad2gaaaGccaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiaaiMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIOa GaamyDamaaDaaaleaacaWG4baabaGaamyBaaaakiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaaGykamaaCaaaleqabaGaaGOmaaaakiaai2 facaWGKbGaamiEaiaadsgacaWG0bGaey4kaSYaaSaaaeaacaaIXaaa baGaaGOmaiabew7aLbaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0 Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipa kiaadAgadaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaadsgacaWG4bGaamizaiaadshacaaISaaaaa@718A@ (30)

где μ=max{ l+4 lε , max Q ¯ T | a t |}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiGac2gacaGGHbGaaiiEaiaaiUhadaWcaaqaaiaadYgacqGHRaWk caaI0aaabaGaamiBaiabew7aLbaacaaISaWaaybuaeqaleaaceWGrb GbaebadaWgaaqaaiaadsfaaeqaaaqabOqaaiGac2gacaGGHbGaaiiE aaaacaaI8bGaamyyamaaBaaaleaacaWG0baabeaakiaaiYhacaaI9b GaaGOlaaaa@4D58@ Первое слагаемое правой части (30) ограничено в силу (23), а второе MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ в силу непрерывности функции f(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3AEF@ в Q ¯ T , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyuayaara WaaSbaaSqaaiaadsfaaeqaaOGaaGilaaaa@38A6@ поэтому из неравенства (30) следует существование u t m L 2 ( Q T ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaDa aaleaacaWG0baabaGaamyBaaaakiabgIGiolaadYeadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaamyuamaaBaaaleaacaWGubaabeaakiaaiM cacaaIUaaaaa@4058@

Оценка (30) вместе с оценкой (23) позволяет выполнить предельный переход при m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkabg6HiLcaa@3A43@ и заключить, что искомое решение задачи N действительно имеет производную u t L 2 ( Q T ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWG0baabeaakiabgIGiolaadYeadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaamyuamaaBaaaleaacaWGubaabeaakiaaiMcacaaIUa aaaa@3F65@

Так как кажлое очередное приближение к решению задачи R, которое ищется из соотношений (14), находится как решение задачи N, то существует первая производная по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@ и у решения задачи R. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaai6 caaaa@3782@

Лемма 2 доказана.

Далее, из неравенств (25) и (27), рассуждая так же, как и выше, убеждаемся, что существует r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOCayaafa GaeyicI4maaa@387A@ L 2 (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyicI4Saam itamaaBaaaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaadsfa caaIPaaaaa@3CE8@

Доказательство Теоремы 1

Для доказательства теоремы 1 достаточно показать, что для U(x,t)= u(x,t) r(t) ,p(t)= r (t) r(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypamaalaaabaGaamyDaiaa iIcacaWG4bGaaGilaiaadshacaaIPaaabaGaamOCaiaaiIcacaWG0b GaaGykaaaacaaISaGaaGjbVlaaysW7caWGWbGaaGikaiaadshacaaI PaGaaGypaiabgkHiTmaalaaabaGabmOCayaafaGaaGikaiaadshaca aIPaaabaGaamOCaiaaiIcacaWG0bGaaGykaaaaaaa@53B2@ выполняются все пункты определения 1.

В (12) возьмем v(x,t)=Φ(t)V(x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypaiabfA6agjaaiIcacaWG 0bGaaGykaiaadAfacaaIOaGaamiEaiaaiMcacaaISaaaaa@4391@ где V(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaaiI cacaWG4bGaaGykaiabgkHiTaaa@3A1D@ произвольный элемент из W 2 1 (0,l), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaaIYaaabaGaaGymaaaakiaaiIcacaaIWaGaaGilaiaadYga caaIPaGaaGilaaaa@3CF9@ Φ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaaG ikaiaadshacaaIPaGaeyOeI0caaa@3AB8@ произвольный элемент из L 2 (0,T),Φ(T)=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaadsfacaaIPaGa aGilaiaaysW7cqqHMoGrcaaIOaGaamivaiaaiMcacaaI9aGaaGimai aai6caaaa@4398@ Тогда (12) в силу леммы 2 может быть записано следующим образом:

0 T Φ(t) 0 l [ u t V(x)+a(x,t) u x V (x)+c(x,t)uV(x)]dxdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOGaeuOPdyKaaGikaiaadsha caaIPaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG 4waiaadwhadaWgaaWcbaGaamiDaaqabaGccaWGwbGaaGikaiaadIha caaIPaGaey4kaSIaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaamyDamaaBaaaleaacaWG4baabeaakiqadAfagaqbaiaaiIcacaWG 4bGaaGykaiabgUcaRiaadogacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiaadwhacaWGwbGaaGikaiaadIhacaaIPaGaaGyxaiaadsgacaWG 4bGaamizaiaadshacqGHRaWkaaa@62AE@

+ 0 T Φ(t)V(l)[ α 2 u(0,t)+ β 2 u(l,t)+ 0 l H 2 (x,t)u(x,t)dx]dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaeuOPdyKaaGik aiaadshacaaIPaGaamOvaiaaiIcacaWGSbGaaGykaiaaiUfacqaHXo qydaWgaaWcbaGaaGOmaaqabaGccaWG1bGaaGikaiaaicdacaaISaGa amiDaiaaiMcacqGHRaWkcqaHYoGydaWgaaWcbaGaaGOmaaqabaGcca WG1bGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGHRaWkdaWdXaqa bSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSbaaSqaai aaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG1bGa aGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiaai2faca WGKbGaamiDaiabgkHiTaaa@678F@

0 T Φ(t)V(0)[ α 1 u(0,t)+ β 1 u(l,t)+ 0 l H 1 (x,t)u(x,t)dx]dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaeuOPdyKaaGik aiaadshacaaIPaGaamOvaiaaiIcacaaIWaGaaGykaiaaiUfacqaHXo qydaWgaaWcbaGaaGymaaqabaGccaWG1bGaaGikaiaaicdacaaISaGa amiDaiaaiMcacqGHRaWkcqaHYoGydaWgaaWcbaGaaGymaaqabaGcca WG1bGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGHRaWkdaWdXaqa bSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSbaaSqaai aaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG1bGa aGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiaai2faca WGKbGaamiDaiaai2daaaa@673A@

= 0 T Φ(t)r(t) 0 l f(x,t)V(x)dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakiabfA6agjaaiIca caWG0bGaaGykaiaadkhacaaIOaGaamiDaiaaiMcadaWdXaqabSqaai aaicdaaeaacaWGSbaaniabgUIiYdGccaWGMbGaaGikaiaadIhacaaI SaGaamiDaiaaiMcacaWGwbGaaGikaiaadIhacaaIPaGaamizaiaadI hacaWGKbGaamiDaiaai6caaaa@5246@ (31)

Так как Φ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaaG ikaiaadshacaaIPaaaaa@39CB@ выбрана достаточно произвольно, то из (31) следует, что для почти всех t[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaaIWaGaaGilaiaadsfacaaIDbaaaa@3C85@ выполняется тождество

0 l [ u t V(x)+a(x,t) u x V (x)+c(x,t)uV(x)]dx+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4waiaadwhadaWgaaWc baGaamiDaaqabaGccaWGwbGaaGikaiaadIhacaaIPaGaey4kaSIaam yyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamyDamaaBaaaleaa caWG4baabeaakiqadAfagaqbaiaaiIcacaWG4bGaaGykaiabgUcaRi aadogacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhacaWGwbGa aGikaiaadIhacaaIPaGaaGyxaiaadsgacaWG4bGaey4kaScaaa@592D@

+V(l)[ α 2 u(0,t)+ β 2 u(l,t)+ 0 l H 2 (x,t)u(x,t)dx] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaam OvaiaaiIcacaWGSbGaaGykaiaaiUfacqaHXoqydaWgaaWcbaGaaGOm aaqabaGccaWG1bGaaGikaiaaicdacaaISaGaamiDaiaaiMcacqGHRa WkcqaHYoGydaWgaaWcbaGaaGOmaaqabaGccaWG1bGaaGikaiaadYga caaISaGaamiDaiaaiMcacqGHRaWkdaWdXaqabSqaaiaaicdaaeaaca WGSbaaniabgUIiYdGccaWGibWaaSbaaSqaaiaaikdaaeqaaOGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaWG1bGaaGikaiaadIhacaaISa GaamiDaiaaiMcacaWGKbGaamiEaiaai2facqGHsislaaa@5E0E@

V(0)[ α 1 u(0,t)+ β 1 u(l,t)+ 0 l H 1 (x,t)u(x,t)dx]= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaam OvaiaaiIcacaaIWaGaaGykaiaaiUfacqaHXoqydaWgaaWcbaGaaGym aaqabaGccaWG1bGaaGikaiaaicdacaaISaGaamiDaiaaiMcacqGHRa WkcqaHYoGydaWgaaWcbaGaaGymaaqabaGccaWG1bGaaGikaiaadYga caaISaGaamiDaiaaiMcacqGHRaWkdaWdXaqabSqaaiaaicdaaeaaca WGSbaaniabgUIiYdGccaWGibWaaSbaaSqaaiaaigdaaeqaaOGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaWG1bGaaGikaiaadIhacaaISa GaamiDaiaaiMcacaWGKbGaamiEaiaai2facaaI9aaaaa@5DB9@

=r(t) 0 l f(x,t)V(x)dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaadk hacaaIOaGaamiDaiaaiMcadaWdXaqabSqaaiaaicdaaeaacaWGSbaa niabgUIiYdGccaWGMbGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca WGwbGaaGikaiaadIhacaaIPaGaamizaiaadIhacaWGKbGaamiDaiaa i6caaaa@4AA7@ (32)

Подставим в (32) u(x,t)=U(x,t)r(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypaiaadwfacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaadkhacaaIOaGaamiDaiaaiMcaaaa@4405@ и учтем, что (U(x,t)r(t)) t = U t (x,t)r(t)U(x,t)r(t)p(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw facaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadkhacaaIOaGaamiD aiaaiMcacaaIPaWaaSbaaSqaaiaadshaaeqaaOGaaGypaiaadwfada WgaaWcbaGaamiDaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiaadkhacaaIOaGaamiDaiaaiMcacqGHsislcaWGvbGaaGikaiaadI hacaaISaGaamiDaiaaiMcacaWGYbGaaGikaiaadshacaaIPaGaamiC aiaaiIcacaWG0bGaaGykaaaa@577D@ в силу (10). Заметим, что r(t)0t[0,T]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGykaiabgcMi5kaaicdacaaMe8UaaGjbVlabgcGiIiaa dshacqGHiiIZcaaIBbGaaGimaiaaiYcacaWGubGaaGyxaiaai6caaa a@46FD@ Поэтому сократив последнее равенство на r(t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGykaiaaiYcaaaa@39FE@ умножив на Φ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaaG ikaiaadshacaaIPaaaaa@39CB@ и проинтегрировав по t[0,T], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaaIWaGaaGilaiaadsfacaaIDbGaaGilaaaa@3D3B@ получим (11). Из (13) после подстановки в него u(x,t)=U(x,t)r(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypaiaadwfacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaadkhacaaIOaGaamiDaiaaiMcaaaa@4405@ следует и выполнение второго равенства определения 1 решения задачи К.

Теорема 1 доказана.

Выводы

Таким образом, в работе исследована разрешимость коэффициентной обратной задачи с нелокальными краевыми условиями и интегральным условием переопределения для одномерного параболического уравнения. Были получены априорные оценки. С помощью полученных оценок и результатов о разрешимости прямой нелокальной задачи для изучаемого уравнения обосновано существование единственного решения поставленной задачи.

×

Об авторах

Андрей Владимирович Богатов

Самарский национальный исследовательский университет имени академика С.П. Королева

Email: andrebogato@mail.ru
ORCID iD: 0000-0001-5797-1930

аспирант кафедры дифференциальных уравнений и теории управления

Россия, Самара

Людмила Степановна Пулькина

Самарский национальный исследовательский университет имени академика С.П. Королева

Автор, ответственный за переписку.
Email: louise@samdiff.ru
ORCID iD: 0000-0001-7947-6121

доктор физико-математических наук, профессор кафедры дифференциальных уравнений и теории управления

Россия, Самара

Список литературы

  1. Прилепко А.И., Орловский Д.Г. Об определении параметра эволюционного уравнения и обратных задач математической физики. II // Дифференциальные уравнения. 1985. Т. 21, № 4. С. 694–701. URL: https://www.mathnet.ru/rus/de5501.
  2. Cannon J.R., Lin Y. Determination of a parameter p(t) in some quasi-linear parabolic differential equations // Inverse Problems. 1988. Vol. 4. Number 1. P. 35–45. DOI: http://doi.org/10.1088/0266-5611/4/1/006.
  3. Cannon J.R., Lin Y. Determination of a control parameter in a parabolic partial differential equation // J. Austral. Math. Soc. Ser. 1991. B 33. P. 149–163. DOI: DOI: http://doi.org/10.1017/S0334270000006962.
  4. Иванчов Н.И. Некоторые обратные задачи для уравнения теплопроводности с нелокальными краевыми условиями // Украинский математический журнал. 1993. Т. 45, № 8. С. 1066–1071. URL: http://dspace.nbuv.gov.ua/handle/123456789/154453.
  5. Стеклов В.А. Задача об охлаждении неоднородного твердого тела // Сообщения Харьковского математического общества. Сер. 2. 1897. Т. 5. С. 136–181. URL: https://www.mathnet.ru/rus/khmo222; http://dspace.univer.kharkov.ua/handle/123456789/13963.
  6. Денисов А.М Введение в теорию обратных задач. Москва: Изд-во Московского университета. 1994. 208 с. URL: http://tka4.org/materials/study/7%20sem/From%20Marcus/[7sem]/Obratnye%20Zadachi%20%5BBaev %20A.V.%5D/Book%20%5BDenisov%20A.M.%20Good%20Scan%5D%20-%20Введение%20в%20теорию%20 обратных%20задач.pdf.
  7. Камынин В.Л. Обратная задача одновременного определения двух зависящих от пространственной переменной младших коэффициентов в параболическом уравнении // Матем. заметки. 2019. Т. 106, № 2. С. 248–261.DOI: http://doi.org/10.4213/mzm12164.
  8. Камынин В.Л. Обратная задача определения младшего коэффициента в параболическом уравнении при условии интегрального переопределения // Матем. заметки. 2013. Т. 94, № 2. С. 207–217. DOI: http://doi.org/10.4213/mzm9370.
  9. Камынин В.Л. Об обратной задаче одновременного определения двух зависящих от времени младших коэффициентов в недивергентном параболическом уравнении на плоскости // Матем. заметки. 2020. Т. 107, № 1. С. 74–86. DOI: http://doi.org/10.4213/mzm12406.
  10. Кожанов А.И. О разрешимости обратной задачи нахождения коэффициента теплопроводности // Сибирский математический журнал. 2005. Т. 46, № 5. С. 1053–1071. URL: https://www.mathnet.ru/rus/smj1021.
  11. Кожанов А.И. Обратные задачи восстановления правой части специального вида в параболическом уравнении // Математические заметки СВФУ. 2016. Т. 23, № 4. С. 31–45. URL: https://www.mathnet.ru/rus/svfu37; https://www.elibrary.ru/item.asp?id=29959200. EDN: https://www.elibrary.ru/zfpnlf.
  12. Бейлин А.Б., Богатов А.В., Пулькина Л.С. Задача с нелокальными условиями для одномерного параболического уравнения // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки. 2022. Т. 26, № 2. С. 380–395. DOI: http://doi.org/10.14498/vsgtu1904.
  13. Гординг Л. Задача Коши для гиперболических уравнений. Москва: Изд-во иностранной литературы, 1961. URL: https://libcats.org/book/507115.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Богатов А.В., Пулькина Л.С., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах