On solvability of the inverse problem for the one-dimensional parabolic equation with unknown time-dependent coefficient under integral observation

Cover Page


Cite item

Full Text

Abstract

In this article, we study the inverse problem of determination of time-dependent coefficient in the parabolic equation. We prove existence and uniqueness theorem for the solution of the inverse problem with nonlocal boundary conditions and integral observation. The proof is based on a priori estimates obtained in this article and the results on solvability of corresponding direct problem for the equarion under consideration.

Full Text

Введение

Статья посвящена исследованию разрешимости задачи, которую будем называть задача К, состоящей в нахождении пары функций (U(x,t),p(t)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw facaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaWGWbGaaGik aiaadshacaaIPaGaaGykaaaa@404C@ таких, что в области Q T =(0,l)×(0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaWGubaabeaakiaai2dacaaIOaGaaGimaiaaiYcacaWGSbGa aGykaiabgEna0kaaiIcacaaIWaGaaGilaiaadsfacaaIPaaaaa@422A@

U t (a(x,t) U x ) x +p(t)U+c(x,t)U=f(x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWG0baabeaakiabgkHiTiaaiIcacaWGHbGaaGikaiaadIha caaISaGaamiDaiaaiMcacaWGvbWaaSbaaSqaaiaadIhaaeqaaOGaaG ykamaaBaaaleaacaWG4baabeaakiabgUcaRiaadchacaaIOaGaamiD aiaaiMcacaWGvbGaey4kaSIaam4yaiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaamyvaiaai2dacaWGMbGaaGikaiaadIhacaaISaGaamiD aiaaiMcacaaISaaaaa@54C2@ (1)

выполняются начальное и краевые условия

U(x,0)=φ(x),x[0,l], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaaiI cacaWG4bGaaGilaiaaicdacaaIPaGaaGypaiabeA8aQjaaiIcacaWG 4bGaaGykaiaaiYcacaaMf8UaamiEaiabgIGiolaaiUfacaaIWaGaaG ilaiaadYgacaaIDbGaaGilaaaa@492D@ (2)

a(0,t) U x (0,t)+ α 1 (t)U(0,t)+ β 1 (t)U(l,t)+ 0 l H 1 (x,t)U(x,t)dx=0, a(l,t) U x (l,t)+ α 2 (t)U(0,t)+ β 2 (t)U(l,t)+ 0 l H 2 (x,t)U(x,t)dx=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaa qaaiaadggacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaadwfadaWg aaWcbaGaamiEaaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykai abgUcaRiabeg7aHnaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGa aGykaiaadwfacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiabgUcaRi abek7aInaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaa dwfacaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiabgUcaRmaapehabe WcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadIeadaWgaaWcbaGa aGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwfaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaaGypaiaa icdacaaISaaabaGaamyyaiaaiIcacaWGSbGaaGilaiaadshacaaIPa GaamyvamaaBaaaleaacaWG4baabeaakiaaiIcacaWGSbGaaGilaiaa dshacaaIPaGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaaG ikaiaadshacaaIPaGaamyvaiaaiIcacaaIWaGaaGilaiaadshacaaI PaGaey4kaSIaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaads hacaaIPaGaamyvaiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaey4k aSYaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamisam aaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaamyvaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadI hacaaI9aGaaGimaiaaiYcaaaaaaa@9D90@ (3)

а также условие переопределения

0 l U(x,t)dx=E(t),t[0,T]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamyvaiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaamizaiaadIhacaaI9aGaamyraiaaiIcaca WG0bGaaGykaiaaiYcacaaMf8UaamiDaiabgIGiolaaiUfacaaIWaGa aGilaiaadsfacaaIDbGaaGOlaaaa@4E20@ (4)

Функции a(x,t),c(x,t),f(x,t), H i (x,t),i=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaadogacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaaiYcacaWGMbGaaGikaiaadIhacaaISa GaamiDaiaaiMcacaaISaGaamisamaaBaaaleaacaWGPbaabeaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaadMgacaaI9aGaaG ymaiaaiYcacaaIYaGaaGilaaaa@5251@ заданы в Q T , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaWGubaabeaakiaaiYcaaaa@388E@ причем a(x,t)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGOpaiaaicdaaaa@3C6C@ всюду в Q ¯ T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyuayaara WaaSbaaSqaaiaadsfaaeqaaaaa@37E6@ , E(t), α i (t), β i (t),i=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaaiI cacaWG0bGaaGykaiaaiYcacqaHXoqydaWgaaWcbaGaamyAaaqabaGc caaIOaGaamiDaiaaiMcacaaISaGaeqOSdi2aaSbaaSqaaiaadMgaae qaaOGaaGikaiaadshacaaIPaGaaGilaiaadMgacaaI9aGaaGymaiaa iYcacaaIYaGaaGilaaaa@4A19@ заданы в [0,T], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaamivaiaai2facaaISaaaaa@3ABE@ и E(t)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaaiI cacaWG0bGaaGykaiabgcMi5kaaicdaaaa@3B9C@ для всех t[0,T], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaaIWaGaaGilaiaadsfacaaIDbGaaGilaaaa@3D3B@ тогда как p(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaaiI cacaWG0bGaaGykaaaa@3946@ подлежит определению.

Интерес к обратным задачам с неизвестным коэффициентом, зависящим лишь от переменной времени, связан с тем фактором, что такие ситуации возникают в различных приложениях, например, в задачах управления [1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ 3], в задачах со свободной границей [17].

Особенностью задачи (1)(4) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacaaIPaGaeyOeI0IaeyOeI0IaaGikaiaaisdacaaIPaaaaa@3C10@ являются нелокальные краевые условия.

Условия вида (3) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaio dacaaIPaaaaa@3815@ возникают при изучении различных процессов тепломассопереноса, термоупругости, а также тесно связаны с задачами управления. Примеры, иллюстрирующие эти утверждения, можно найти в [16], а также в статьях, ссылки на которые содержатся в списке литературы отмеченной статьи.

Заметим, что нелокальные краевые условия (3) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaio dacaaIPaaaaa@3815@ являются обобщением краевых условий статьи [3], которые, в свою очередь, являются обобщением условий (S) Стеклова [18], возникающих при исследовании процесса остывания твердого тела:

α 11 u x (0,t)+ α 12 u x (l,t)+ β 11 u(0,t)+ β 12 u(l,t)= g 1 (t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaigdacaaIXaaabeaakiaadwhadaWgaaWcbaGaamiEaaqa baGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiabgUcaRiabeg7aHn aaBaaaleaacaaIXaGaaGOmaaqabaGccaWG1bWaaSbaaSqaaiaadIha aeqaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGHRaWkcqaHYo GydaWgaaWcbaGaaGymaiaaigdaaeqaaOGaamyDaiaaiIcacaaIWaGa aGilaiaadshacaaIPaGaey4kaSIaeqOSdi2aaSbaaSqaaiaaigdaca aIYaaabeaakiaadwhacaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiaa i2dacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPa GaaGilaaaa@6177@

α 21 u x (0,t)+ α 22 u x (l,t)+ β 21 u(0,t)+ β 22 u(l,t)= g 2 (t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaikdacaaIXaaabeaakiaadwhadaWgaaWcbaGaamiEaaqa baGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiabgUcaRiabeg7aHn aaBaaaleaacaaIYaGaaGOmaaqabaGccaWG1bWaaSbaaSqaaiaadIha aeqaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGHRaWkcqaHYo GydaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaamyDaiaaiIcacaaIWaGa aGilaiaadshacaaIPaGaey4kaSIaeqOSdi2aaSbaaSqaaiaaikdaca aIYaaabeaakiaadwhacaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiaa i2dacaWGNbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaIPa GaaGilaaaa@617C@

где α ij , β ij MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadMgacaWGQbaabeaakiaaiYcacqaHYoGydaWgaaWcbaGa amyAaiaadQgaaeqaaaaa@3E05@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ числа. Эта статья, по-видиммому, является первой статьей, посвященной исследованию разрешимости задачи для уравнения теплопроводности с условиями (S) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaado facaaIPaaaaa@3830@ , которые гораздо позднее стали называть нелокальными условиями.

Таким образом, условия (3) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaio dacaaIPaaaaa@3815@ изучаемой задачи можно интерпретировать как возмущенные (в силу присутствия интегральных слагаемых) обобщения условий Стеклова.

Условие переопределения (4) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaais dacaaIPaaaaa@3816@ имеет интегральное представление, и его естественно понимать как результат действия некоего прибора [19], дающего информацию о среднем значении искомого решения. Обратные задачи с интегральным условием переопределения рассматривались в работах Камынина [7 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ 9], но в них задан интеграл по переменной времени t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@ . В нашей работе условие переопределения представляет собой интеграл по пространственной переменной.

Нелинейные обратные задачи с неизвестными коэффициентами, зависящими от переменной времени, изучались различными методами многими авторами. Отметим как наиболее близкие по виду условия переопределения, кроме упомянутых уже [1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ 9] еще и работы [10; 11].

1. Разрешимость задачи К

Начнем исследование задачи К с выполнения преобразований

r(t)=exp{ 0 t p(τ)dτ},u(x,t)=U(x,t)r(t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGykaiaai2daciGGLbGaaiiEaiaacchacaaI7bGaeyOe I0Yaa8qmaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamiCai aaiIcacqaHepaDcaaIPaGaamizaiabes8a0jaai2hacaaISaGaaGzb VlaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2dacaWGvb GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGYbGaaGikaiaadsha caaIPaGaaGOlaaaa@5BA5@ (5)

Тогда, если (U(x,t),p(t)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw facaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaWGWbGaaGik aiaadshacaaIPaGaaGykaaaa@404C@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ решение задачи К, то введенные в (5) новые функции удовлетворяют равенствам

u t (a(x,t) u x ) x +c(x,t)u=r(t)f(x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWG0baabeaakiabgkHiTiaaiIcacaWGHbGaaGikaiaadIha caaISaGaamiDaiaaiMcacaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaaG ykamaaBaaaleaacaWG4baabeaakiabgUcaRiaadogacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaadwhacaaI9aGaamOCaiaaiIcacaWG0b GaaGykaiaadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYca aaa@5368@ (6)

u(x,0)=φ(x),x[0,l], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaaicdacaaIPaGaaGypaiabeA8aQjaaiIcacaWG 4bGaaGykaiaaiYcacaaMf8UaamiEaiabgIGiolaaiUfacaaIWaGaaG ilaiaadYgacaaIDbGaaGilaaaa@494D@ (7)

a(0,t) u x (0,t)+ α 1 (t)u(0,t)+ β 1 (t)u(l,t)+ 0 l H 1 (x,t)u(x,t)dx=0, a(l,t) u x (l,t)+ α 2 (t)u(0,t)+ β 2 (t)u(l,t)+ 0 l H 2 (x,t)u(x,t)dx=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaa qaaiaadggacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaadwhadaWg aaWcbaGaamiEaaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykai abgUcaRiabeg7aHnaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGa aGykaiaadwhacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiabgUcaRi abek7aInaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaa dwhacaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiabgUcaRmaapehabe WcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadIeadaWgaaWcbaGa aGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaaGypaiaa icdacaaISaaabaGaamyyaiaaiIcacaWGSbGaaGilaiaadshacaaIPa GaamyDamaaBaaaleaacaWG4baabeaakiaaiIcacaWGSbGaaGilaiaa dshacaaIPaGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaaG ikaiaadshacaaIPaGaamyDaiaaiIcacaaIWaGaaGilaiaadshacaaI PaGaey4kaSIaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaads hacaaIPaGaamyDaiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaey4k aSYaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamisam aaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaamyDaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadI hacaaI9aGaaGimaiaaiYcaaaaaaa@9E90@ (8)

r(t)=[E(t )] 1 0 l u(x,t)dx,t[0,T]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGykaiaai2dacaaIBbGaamyraiaaiIcacaWG0bGaaGyk aiaai2fadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaWdXaqabSqaai aaicdaaeaacaWGSbaaniabgUIiYdGccaWG1bGaaGikaiaadIhacaaI SaGaamiDaiaaiMcacaWGKbGaamiEaiaaiYcacaaMf8UaamiDaiabgI GiolaaiUfacaaIWaGaaGilaiaadsfacaaIDbGaaGOlaaaa@5540@ (9)

Из (6) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (9) видно, что преобразования (5) сводят коэффициентную и, стало быть, нелинейную, задачу К к линейной обратной задаче определения источника, другими словами, правой части уравнения (6). Назовем ее задача R. Если окажется, что существует решение (u,r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw hacaaISaGaamOCaiaaiMcaaaa@39FF@ задачи R, то решение задачи К может быть получено с помощью обратных к (5) преобразований

U(x,t)= u(x,t) r(t) ,p(t)= r (t) r(t) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypamaalaaabaGaamyDaiaa iIcacaWG4bGaaGilaiaadshacaaIPaaabaGaamOCaiaaiIcacaWG0b GaaGykaaaacaaISaGaaGzbVlaadchacaaIOaGaamiDaiaaiMcacaaI 9aGaeyOeI0YaaSaaaeaaceWGYbGbauaacaaIOaGaamiDaiaaiMcaae aacaWGYbGaaGikaiaadshacaaIPaaaaiaai6caaaa@52DE@ (10)

Уточним понятие решений задач. Начнем с задачи К.

Определение 1. Решением задачи K будем называть пару функций (U,p) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw facaaISaGaamiCaiaaiMcaaaa@39DD@ таких, что U W 2 1,1 ( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaigdacaaISaGaaGymaaaa kiaaiIcacaWGrbWaaSbaaSqaaiaadsfaaeqaaOGaaGykaaaa@3F96@ , p L 2 (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabgI GiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiYca caWGubGaaGykaaaa@3DDD@ , U(x,0)=φ(x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaaiI cacaWG4bGaaGilaiaaicdacaaIPaGaaGypaiabeA8aQjaaiIcacaWG 4bGaaGykaiaaiYcaaaa@403B@ для всех v W ^ 2 1 ( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgI GiolqadEfagaqcamaaDaaaleaacaaIYaaabaGaaGymaaaakiaaiIca caWGrbWaaSbaaSqaaiaadsfaaeqaaOGaaGykaaaa@3E56@ справедливо тождество

0 T 0 l [ U t v+a(x,t) U x v x +p(t)U+c(x,t)U]dxdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOWaa8qmaeqaleaacaaIWaaa baGaamiBaaqdcqGHRiI8aOGaaG4waiaadwfadaWgaaWcbaGaamiDaa qabaGccaWG2bGaey4kaSIaamyyaiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaamyvamaaBaaaleaacaWG4baabeaakiaadAhadaWgaaWcba GaamiEaaqabaGccqGHRaWkcaWGWbGaaGikaiaadshacaaIPaGaamyv aiabgUcaRiaadogacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadw facaaIDbGaamizaiaadIhacaWGKbGaamiDaiabgUcaRaaa@5CEB@

+ 0 T v(l,t)[ α 2 U(0,t)+ β 2 U(l,t)+ 0 l H 2 (x,t)U(x,t)dx]dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamODaiaaiIca caWGSbGaaGilaiaadshacaaIPaGaaG4waiabeg7aHnaaBaaaleaaca aIYaaabeaakiaadwfacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiab gUcaRiabek7aInaaBaaaleaacaaIYaaabeaakiaadwfacaaIOaGaam iBaiaaiYcacaWG0bGaaGykaiabgUcaRmaapedabeWcbaGaaGimaaqa aiaadYgaa0Gaey4kIipakiaadIeadaWgaaWcbaGaaGOmaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwfacaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiaadsgacaWG4bGaaGyxaiaadsgacaWG0bGaey OeI0caaa@6526@

0 T v(0,t)[ α 1 U(0,t)+ β 1 U(l,t)+ 0 l H 1 (x,t)U(x,t)dx]dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamODaiaaiIca caaIWaGaaGilaiaadshacaaIPaGaaG4waiabeg7aHnaaBaaaleaaca aIXaaabeaakiaadwfacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiab gUcaRiabek7aInaaBaaaleaacaaIXaaabeaakiaadwfacaaIOaGaam iBaiaaiYcacaWG0bGaaGykaiabgUcaRmaapedabeWcbaGaaGimaaqa aiaadYgaa0Gaey4kIipakiaadIeadaWgaaWcbaGaaGymaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwfacaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiaadsgacaWG4bGaaGyxaiaadsgacaWG0bGaaG ypaaaa@64D1@

= 0 T 0 l f(x,t)v(x,t)dxdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakmaapedabeWcbaGa aGimaaqaaiaadYgaa0Gaey4kIipakiaadAgacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaadAhacaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiaadsgacaWG4bGaamizaiaadshaaaa@4C30@ (11)

и выполняется равенство

0 l U(x,t)dx=E(t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamyvaiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaamizaiaadIhacaaI9aGaamyraiaaiIcaca WG0bGaaGykaiaai6caaaa@454A@

Теорема 1. Пусть выполняются следующие условия:

a)a, a t ,cC( Q ¯ T ), α i , β i C 1 [0,T],φ L 2 (0,l), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiM cacaaMe8UaaGjbVlaadggacaaISaGaamyyamaaBaaaleaacaWG0baa beaakiaaiYcacaWGJbGaeyicI4Saam4qaiaaiIcaceWGrbGbaebada WgaaWcbaGaamivaaqabaGccaaIPaGaaGilaiaaysW7cqaHXoqydaWg aaWcbaGaamyAaaqabaGccaaISaGaeqOSdi2aaSbaaSqaaiaadMgaae qaaOGaeyicI4Saam4qamaaCaaaleqabaGaaGymaaaakiaaiUfacaaI WaGaaGilaiaadsfacaaIDbGaaGilaiaaysW7cqaHgpGAcqGHiiIZca WGmbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaaicdacaaISaGaamiB aiaaiMcacaaISaaaaa@613A@

b)f, H i , H it C( Q ¯ T ),EC[0,T],E(t)0t[0,T], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaaiM cacaaMe8UaamOzaiaaiYcacaWGibWaaSbaaSqaaiaadMgaaeqaaOGa aGilaiaadIeadaWgaaWcbaGaamyAaiaadshaaeqaaOGaeyicI4Saam 4qaiaaiIcaceWGrbGbaebadaWgaaWcbaGaamivaaqabaGccaaIPaGa aGilaiaaysW7caWGfbGaeyicI4Saam4qaiaaiUfacaaIWaGaaGilai aadsfacaaIDbGaaGilaiaaysW7caWGfbGaaGikaiaadshacaaIPaGa eyiyIKRaaGimaiaaysW7caaMe8UaeyiaIiIaamiDaiabgIGiolaaiU facaaIWaGaaGilaiaadsfacaaIDbGaaGilaaaa@6286@

c) α 2 (t)+ β 1 (t)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaaiM cacaaMe8UaaGjbVlabeg7aHnaaBaaaleaacaaIYaaabeaakiaaiIca caWG0bGaaGykaiabgUcaRiabek7aInaaBaaaleaacaaIXaaabeaaki aaiIcacaWG0bGaaGykaiaai2dacaaIWaGaaGilaaaa@47A0@

d) α 1 (t) ξ 2 +2 β 1 (t)ξη β 2 (t) η 2 0,t[0,T]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaaiM cacaaMe8UaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadsha caaIPaGaeqOVdG3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmai abek7aInaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiab e67a4jabeE7aOjabgkHiTiabek7aInaaBaaaleaacaaIYaaabeaaki aaiIcacaWG0bGaaGykaiabeE7aOnaaCaaaleqabaGaaGOmaaaakiab gsMiJkaaicdacaaISaGaaGjbVlaaysW7caWG0bGaeyicI4SaaG4wai aaicdacaaISaGaamivaiaai2facaaIUaaaaa@60C3@

Тогда существует единственное решение (U(x,t),p(t)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw facaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaWGWbGaaGik aiaadshacaaIPaGaaGykaaaa@404C@ задачи K.

Доказательство Теоремы 1 базируется на факте разрешимости задачи R и будет предъявлено после того, как мы докажем существование единственного решения задачи R, принадлежащего нужному нам пространству, что мы уточним ниже. Поэтому перейдем к исследованию задачи R.

1.1. Разрешимость задачи R

Определение 2.

Решением задачи R будем называть пару функций (u,r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw hacaaISaGaamOCaiaaiMcaaaa@39FF@ таких, что u W 2 1,0 ( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaigdacaaISaGaaGimaaaa kiaaiIcacaWGrbWaaSbaaSqaaiaadsfaaeqaaOGaaGykaaaa@3FB5@ , r L 2 (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgI GiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiYca caWGubGaaGykaaaa@3DDF@ , для всех v W ^ 2 1 ( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgI GiolqadEfagaqcamaaDaaaleaacaaIYaaabaGaaGymaaaakiaaiIca caWGrbWaaSbaaSqaaiaadsfaaeqaaOGaaGykaaaa@3E56@ справедливо тождество

0 T 0 l [u v t +a(x,t) u x v x +c(x,t)u]dxdt+ 0 l φ(x)v(x,0)dx+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOWaa8qmaeqaleaacaaIWaaa baGaamiBaaqdcqGHRiI8aOGaaG4waiabgkHiTiaadwhacaWG2bWaaS baaSqaaiaadshaaeqaaOGaey4kaSIaamyyaiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamyDamaaBaaaleaacaWG4baabeaakiaadAhada WgaaWcbaGaamiEaaqabaGccqGHRaWkcaWGJbGaaGikaiaadIhacaaI SaGaamiDaiaaiMcacaWG1bGaaGyxaiaadsgacaWG4bGaamizaiaads hacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGc cqaHgpGAcaaIOaGaamiEaiaaiMcacaWG2bGaaGikaiaadIhacaaISa GaaGimaiaaiMcacaWGKbGaamiEaiabgUcaRaaa@68BC@

+ 0 T v(l,t)[ α 2 u(0,t)+ β 2 u(l,t)+ 0 l H 2 (x,t)u(x,t)dx]dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamODaiaaiIca caWGSbGaaGilaiaadshacaaIPaGaaG4waiabeg7aHnaaBaaaleaaca aIYaaabeaakiaadwhacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiab gUcaRiabek7aInaaBaaaleaacaaIYaaabeaakiaadwhacaaIOaGaam iBaiaaiYcacaWG0bGaaGykaiabgUcaRmaapedabeWcbaGaaGimaaqa aiaadYgaa0Gaey4kIipakiaadIeadaWgaaWcbaGaaGOmaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhacaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiaadsgacaWG4bGaaGyxaiaadsgacaWG0bGaey OeI0caaa@6586@

0 T v(0,t)[ α 1 u(0,t)+ β 1 u(l,t)+ 0 l H 1 (x,t)u(x,t)dx]dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamODaiaaiIca caaIWaGaaGilaiaadshacaaIPaGaaG4waiabeg7aHnaaBaaaleaaca aIXaaabeaakiaadwhacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiab gUcaRiabek7aInaaBaaaleaacaaIXaaabeaakiaadwhacaaIOaGaam iBaiaaiYcacaWG0bGaaGykaiabgUcaRmaapedabeWcbaGaaGimaaqa aiaadYgaa0Gaey4kIipakiaadIeadaWgaaWcbaGaaGymaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhacaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiaadsgacaWG4bGaaGyxaiaadsgacaWG0bGaaG ypaaaa@6531@

= 0 T 0 l f(x,t)r(t)v(x,t)dxdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakmaapedabeWcbaGa aGimaaqaaiaadYgaa0Gaey4kIipakiaadAgacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaadkhacaaIOaGaamiDaiaaiMcacaWG2bGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiaadsgacaWG0b aaaa@4F85@ (12) 

и выполняется равенство

0 l u(x,t)dx=E(t)r(t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamyDaiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaamizaiaadIhacaaI9aGaamyraiaaiIcaca WG0bGaaGykaiaadkhacaaIOaGaamiDaiaaiMcacaaIUaaaaa@48BF@ (13)

Теорема 2. Пусть выполнены условия Теоремы 1. Тогда существует единственное решение задачи R.

Доказательство.

Не ограничивая общности, положим φ(x)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaIPaGaaGypaiaaicdaaaa@3B93@ . Будем искать приближенные решения задачи R из соотношений:

0 T 0 l ( u n v t +a(x,t) u nx v x +c(x,t) u n v)dxdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOWaa8qmaeqaleaacaaIWaaa baGaamiBaaqdcqGHRiI8aOGaaGikaiabgkHiTiaadwhadaWgaaWcba GaamOBaaqabaGccaWG2bWaaSbaaSqaaiaadshaaeqaaOGaey4kaSIa amyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamyDamaaBaaale aacaWGUbGaamiEaaqabaGccaWG2bWaaSbaaSqaaiaadIhaaeqaaOGa ey4kaSIaam4yaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamyDam aaBaaaleaacaWGUbaabeaakiaadAhacaaIPaGaamizaiaadIhacaWG KbGaamiDaiabgkHiTaaa@5D0D@

0 T v(0,t)[ α 1 (t) u n (0,t)+ β 1 (t) u n (l,t)+ 0 l H 1 (x,t) u n (x,t)dx]dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamODaiaaiIca caaIWaGaaGilaiaadshacaaIPaGaaG4waiabeg7aHnaaBaaaleaaca aIXaaabeaakiaaiIcacaWG0bGaaGykaiaadwhadaWgaaWcbaGaamOB aaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiabgUcaRiabek 7aInaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaadwha daWgaaWcbaGaamOBaaqabaGccaaIOaGaamiBaiaaiYcacaWG0bGaaG ykaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipa kiaadIeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaadwhadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaaGyxaiaadsgacaWG0b Gaey4kaScaaa@6DC3@

+ 0 T v(l,t)[ α 2 (t) u n (0,t)+ β 2 (t) u n (l,t)+ 0 l H 2 (x,t) u n (x,t)dx]dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamODaiaaiIca caWGSbGaaGilaiaadshacaaIPaGaaG4waiabeg7aHnaaBaaaleaaca aIYaaabeaakiaaiIcacaWG0bGaaGykaiaadwhadaWgaaWcbaGaamOB aaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiabgUcaRiabek 7aInaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaadwha daWgaaWcbaGaamOBaaqabaGccaaIOaGaamiBaiaaiYcacaWG0bGaaG ykaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipa kiaadIeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaadwhadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaaGyxaiaadsgacaWG0b GaaGypaaaa@6DD7@

= 0 T 0 l vf(x,t) r n (t)dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakmaapedabeWcbaGa aGimaaqaaiaadYgaa0Gaey4kIipakiaadAhacaWGMbGaaGikaiaadI hacaaISaGaamiDaiaaiMcacaWGYbWaaSbaaSqaaiaad6gaaeqaaOGa aGikaiaadshacaaIPaGaamizaiaadIhacaWGKbGaamiDaiaaiYcaaa a@4D53@ (14)

r n (t)= 1 E(t) 0 l u n1 (x,t)dx, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGykaiaai2dadaWcaaqa aiaaigdaaeaacaWGfbGaaGikaiaadshacaaIPaaaamaapedabeWcba GaaGimaaqaaiaadYgaa0Gaey4kIipakiaadwhadaWgaaWcbaGaamOB aiabgkHiTiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiM cacaWGKbGaamiEaiaaiYcaaaa@4D82@ (15)

выбрав

u 0 = E(t) l . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIWaaabeaakiaai2dadaWcaaqaaiaadweacaaIOaGaamiD aiaaiMcaaeaacaWGSbaaaiaai6caaaa@3D85@

В силу выбора нулевого приближения u 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIWaaabeaaaaa@37D3@ из (13 найдем r 1 (t)=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaai2dacaaIXaaa aa@3BBB@ . Тогда для n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaaaaa@3868@ (14) представляет собой тождество, определяющее обобщенное решение нелокальной прямой задачи N в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaWGubaabeaaaaa@37CE@ , состоящей в нахождении решения уравнения

u t (a(x,t) u x ) x +c(x,t)u=f(x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWG0baabeaakiabgkHiTiaaiIcacaWGHbGaaGikaiaadIha caaISaGaamiDaiaaiMcacaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaaG ykamaaBaaaleaacaWG4baabeaakiabgUcaRiaadogacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaadwhacaaI9aGaamOzaiaaiIcacaWG4b GaaGilaiaadshacaaIPaGaaGilaaaa@5013@

удовлетворяющего начальным данным

u(x,0)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaaicdacaaIPaGaaGypaiaaicdacaaISaaaaa@3CF6@

и нелокальным условиям

a(0,t) u x (0,t)+ α 1 (t)u(0,t)+ β 1 (t)u(l,t)+ 0 l H 1 (x,t)u(x,t)dx=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaaIWaGaaGilaiaadshacaaIPaGaamyDamaaBaaaleaacaWG4baa beaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaey4kaSIaeqySde 2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaamyDaiaa iIcacaaIWaGaaGilaiaadshacaaIPaGaey4kaSIaeqOSdi2aaSbaaS qaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaamyDaiaaiIcacaWG SbGaaGilaiaadshacaaIPaGaey4kaSYaa8qCaeqaleaacaaIWaaaba GaamiBaaqdcqGHRiI8aOGaamisamaaBaaaleaacaaIXaaabeaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaamyDaiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaamizaiaadIhacaaI9aGaaGimaiaaiYcaaaa@6A03@

a(l,t) u x (l,t)+ α 2 (t)u(0,t)+ β 2 (t)u(l,t)+ 0 l H 2 (x,t)u(x,t)dx=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWGSbGaaGilaiaadshacaaIPaGaamyDamaaBaaaleaacaWG4baa beaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaey4kaSIaeqySde 2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaamyDaiaa iIcacaaIWaGaaGilaiaadshacaaIPaGaey4kaSIaeqOSdi2aaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaamyDaiaaiIcacaWG SbGaaGilaiaadshacaaIPaGaey4kaSYaa8qCaeqaleaacaaIWaaaba GaamiBaaqdcqGHRiI8aOGaamisamaaBaaaleaacaaIYaaabeaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaamyDaiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaamizaiaadIhacaaI9aGaaGimaiaai6caaaa@6A76@

Разрешимость в W 2 1,0 ( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaaIYaaabaGaaGymaiaaiYcacaaIWaaaaOGaaGikaiaadgfa daWgaaWcbaGaamivaaqabaGccaaIPaaaaa@3D37@ этой задачи доказана в [25], поэтому существует единственная функция u 1 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@3BEF@ , удовлетворяющая тождеству (12).

Тогда мы можем найти r 2 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaaaa@3A3A@ из (15), причем очевидно, что r 2 L 2 (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIYaaabeaakiabgIGiolaadYeadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaaGimaiaaiYcacaWGubGaaGykaaaa@3ED1@ . Действительно,

r 2 (t)= 1 E(t) 0 l u 1 (x,t)dx, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaai2dadaWcaaqa aiaaigdaaeaacaWGfbGaaGikaiaadshacaaIPaaaamaapedabeWcba GaaGimaaqaaiaadYgaa0Gaey4kIipakiaadwhadaWgaaWcbaGaaGym aaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4b GaaGilaaaa@4B6B@

откуда с помощью неравенства Коши MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ Буняковского получим

r 2 2 (t) l E 2 (t) 0 l u 1 2 (x,t)dx. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaDa aaleaacaaIYaaabaGaaGOmaaaakiaaiIcacaWG0bGaaGykaiabgsMi JoaalaaabaGaamiBaaqaaiaadweadaahaaWcbeqaaiaaikdaaaGcca aIOaGaamiDaiaaiMcaaaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqd cqGHRiI8aOGaamyDamaaDaaaleaacaaIXaaabaGaaGOmaaaakiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhacaaIUaaaaa@4EFE@

Интегрируя полученное неравенство по (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaic dacaaISaGaamivaiaaiMcaaaa@39A1@ и учитывая, что E(t)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaaiI cacaWG0bGaaGykaiabgcMi5kaaicdaaaa@3B9C@ всюду в [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaamivaiaai2faaaa@3A08@ и там же непрерывна, а следовательно, найдется положительное число E 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaaIWaaabeaaaaa@37A3@ такое, что [ E 2 (t)] 1 < E 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadw eadaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiDaiaaiMcacaaIDbWa aWbaaSqabeaacqGHsislcaaIXaaaaOGaaGipaiaadweadaWgaaWcba GaaGimaaqabaGccaaISaaaaa@40EF@ приходим к неравенству

0 T r 2 2 dt E 0 0 T 0 l u 1 2 (x,t)dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamOCamaaDaaaleaacaaI YaaabaGaaGOmaaaakiaadsgacaWG0bGaeyizImQaamyramaaBaaale aacaaIWaaabeaakmaapedabeWcbaGaaGimaaqaaiaadsfaa0Gaey4k IipakmaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadw hadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaaIOaGaamiEaiaaiYca caWG0bGaaGykaiaadsgacaWG4bGaamizaiaadshacaaISaaaaa@548E@

из которого в силу принадлежности u 1 W 2 1,0 ( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiabgIGiolaadEfadaqhaaWcbaGaaGOmaaqa aiaaigdacaaISaGaaGimaaaakiaaiIcacaWGrbWaaSbaaSqaaiaads faaeqaaOGaaGykaaaa@40A6@ следует ограниченность интеграла 0 T r 2 2 (t)dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamOCamaaDaaaleaacaaI YaaabaGaaGOmaaaakiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaaG Olaaaa@4158@

На следующем шаге заметим, что f r 2 L 2 (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadk hadaWgaaWcbaGaaGOmaaqabaGccqGHiiIZcaWGmbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaaicdacaaISaGaamivaiaaiMcaaaa@3FBC@ . Действительно, так как fC( Q ¯ T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaadoeacaaIOaGabmyuayaaraWaaSbaaSqaaiaadsfaaeqaaOGa aGykaaaa@3C8C@ , то существует k>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai6 dacaaIWaaaaa@3865@ такое, что max Q T |f| k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGrbWaaSbaaeaacaWGubaabeaaaeqakeaaciGGTbGaaiyyaiaa cIhaaaGaaGiFaiaadAgacaaI8bGaeyizIm6aaOaaaeaacaWGRbaale qaaaaa@40D2@ , тогда

0 T f 2 (x,t) r 2 2 (t)dtk 0 T r 2 2 (t)dt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamOzamaaCaaaleqabaGa aGOmaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamOCamaaDa aaleaacaaIYaaabaGaaGOmaaaakiaaiIcacaWG0bGaaGykaiaadsga caWG0bGaeyizImQaam4AamaapedabeWcbaGaaGimaaqaaiaadsfaa0 Gaey4kIipakiaadkhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaI OaGaamiDaiaaiMcacaWGKbGaamiDaiaaiYcaaaa@5497@

и в силу доказанной выше принадлежности r 2 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaaaa@3A3A@ пространству L 2 (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaadsfacaaIPaaa aa@3B64@ убеждаемся в справедливости утверждения.

Продолжив этот процесс, мы построим последовательности { u n (x,t)} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaadw hadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiaai2haaaa@3E33@ и { r n (t)} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaadk hadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiDaiaaiMcacaaI9baa aa@3C7D@ .

Покажем теперь, что эти последовательности сходятся. Для этого воспользуемся результатами статьи [25], немного модифицировав в ней оценку.

Приведем кратко вывод априорной оценки решения задачи N в нужной нам форме и представим его в виде Леммы.

Лемма 1. Решение задачи N, принадлежащее пространству W 2 1,0 ( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaaIYaaabaGaaGymaiaaiYcacaaIWaaaaOGaaGikaiaadgfa daWgaaWcbaGaamivaaqabaGccaaIPaaaaa@3D37@ , удовлетворяет неравенству

||u || W 2 1,0 ( Q T ) ε M||f || L 2 ( Q T ) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaaiY hacaWG1bGaaGiFaiaaiYhadaWgaaWcbaGaam4vamaaDaaabaGaaGOm aaqaaiaaigdacaaISaGaaGimaaaacaaIOaGaamyuamaaBaaabaGaam ivaaqabaGaaGykaaqabaGccqGHKjYOdaGcaaqaaiabew7aLbWcbeaa kiaad2eacaaI8bGaaGiFaiaadAgacaaI8bGaaGiFamaaBaaaleaaca WGmbWaaSbaaeaacaaIYaaabeaacaaIOaGaamyuamaaBaaabaGaamiv aaqabaGaaGykaaqabaGccaaISaaaaa@517A@

где число M>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaai6 dacaaIWaaaaa@3847@ и будет уточнено при доказательстве.

Доказательство. В [25] доказано существование функции u W 2 1,0 ( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaigdacaaISaGaaGimaaaa kiaaiIcacaWGrbWaaSbaaSqaaiaadsfaaeqaaOGaaGykaaaa@3FB5@ , которая является решением задачи N. Существенную роль в доказательстве играет полученная априорная оценка. Оставляя неизменными основные этапы вывода этой оценки, внесем в нее некоторые коррективы. Для наглядности приведем здесь коротко вывод равенства, из которого получена оценка.

Приближенное решение задачи N ищется в виде

u m (x,t)= k=1 m c km (t) w k (x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaamyBaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGypamaaqahabeWcbaGaam4Aaiaai2dacaaIXaaabaGaamyBaaqdcq GHris5aOGaam4yamaaBaaaleaacaWGRbGaamyBaaqabaGccaaIOaGa amiDaiaaiMcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadI hacaaIPaGaaGilaaaa@4D37@

где w k (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG4bGaaGykaaaa@3A77@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ фундаментальная система в W 2 1,0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaaIYaaabaGaaGymaiaaiYcacaaIWaaaaaaa@39E3@ из соотношений

0 l [ u t m w i (x)+a(x,t) u x m w i ' (x)+c(x,t) u m w i (x)]dx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4waiaadwhadaqhaaWc baGaamiDaaqaaiaad2gaaaGccaWG3bWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadIhacaaIPaGaey4kaSIaamyyaiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamyDamaaDaaaleaacaWG4baabaGaamyBaaaaki aadEhadaqhaaWcbaGaamyAaaqaaiaaiEcaaaGccaaIOaGaamiEaiaa iMcacqGHRaWkcaWGJbGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca WG1bWaaWbaaSqabeaacaWGTbaaaOGaam4DamaaBaaaleaacaWGPbaa beaakiaaiIcacaWG4bGaaGykaiaai2facaWGKbGaamiEaiabgkHiTa aa@60BC@

w i (0)[ α 1 u m (0,t)+ β 1 u m (l,t)+ 0 l H 1 (x,t) u m (x,t)dx]+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaam 4DamaaBaaaleaacaWGPbaabeaakiaaiIcacaaIWaGaaGykaiaaiUfa cqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWG1bWaaWbaaSqabeaaca WGTbaaaOGaaGikaiaaicdacaaISaGaamiDaiaaiMcacqGHRaWkcqaH YoGydaWgaaWcbaGaaGymaaqabaGccaWG1bWaaWbaaSqabeaacaWGTb aaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGHRaWkdaWdXaqa bSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSbaaSqaai aaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG1bWa aWbaaSqabeaacaWGTbaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiM cacaWGKbGaamiEaiaai2facqGHRaWkaaa@6294@

+ w i (l)[ α 2 u m (0,t)+ β 2 u m (l,t)+ 0 l H 2 (x,t) u m (x,t)dx]= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaam 4DamaaBaaaleaacaWGPbaabeaakiaaiIcacaWGSbGaaGykaiaaiUfa cqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaWG1bWaaWbaaSqabeaaca WGTbaaaOGaaGikaiaaicdacaaISaGaamiDaiaaiMcacqGHRaWkcqaH YoGydaWgaaWcbaGaaGOmaaqabaGccaWG1bWaaWbaaSqabeaacaWGTb aaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGHRaWkdaWdXaqa bSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSbaaSqaai aaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG1bWa aWbaaSqabeaacaWGTbaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiM cacaWGKbGaamiEaiaai2facaaI9aaaaa@62A8@

= 0 l f(x,t) w i (x)dx. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadAgacaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaadEhadaWgaaWcbaGaamyAaaqaba GccaaIOaGaamiEaiaaiMcacaWGKbGaamiEaiaai6caaaa@46B5@ (16)

В результате преобразований, которые подробно проделаны в [25], и здесь их опустим, получим

1 2 0 l ( u m (x,τ) 2 dx+ 0 τ 0 l a(x,t)( u x m ) 2 dxdt= 0 τ 0 l c(x,t)( u m ) 2 dxdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaadaWdXaqabSqaaiaaicdaaeaacaWGSbaaniab gUIiYdGccaaIOaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcaca WG4bGaaGilaiabes8a0jaaiMcadaahaaWcbeqaaiaaikdaaaGccaWG KbGaamiEaiabgUcaRmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcq GHRiI8aOWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGa amyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGikaiaadwhada qhaaWcbaGaamiEaaqaaiaad2gaaaGccaaIPaWaaWbaaSqabeaacaaI YaaaaOGaamizaiaadIhacaWGKbGaamiDaiaai2dacqGHsisldaWdXa qabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakmaapedabeWcbaGa aGimaaqaaiaadYgaa0Gaey4kIipakiaadogacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaaiIcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGa aGykamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG4bGaamizaiaads hacqGHRaWkaaa@75F3@

+ 0 τ α 1 (t)( u m (0,t )) 2 dt 0 τ β 2 (t)( u m (l,t )) 2 dt+2 0 τ β 1 (t) u m (0,t) u m (0,t)dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccqaHXoqydaWg aaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcacaaIOaGaamyDam aaCaaaleqabaGaamyBaaaakiaaiIcacaaIWaGaaGilaiaadshacaaI PaGaaGykamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG0bGaeyOeI0 Yaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccqaHYoGy daWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiMcacaaIOaGaam yDamaaCaaaleqabaGaamyBaaaakiaaiIcacaWGSbGaaGilaiaadsha caaIPaGaaGykamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG0bGaey 4kaSIaaGOmamaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8 aOGaeqOSdi2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPa GaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaaIWaGaaGilaiaa dshacaaIPaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaaIWa GaaGilaiaadshacaaIPaGaamizaiaadshacqGHRaWkaaa@797B@

+ 0 τ u m (0,t) 0 l H 1 (x,t) u m (x,t)dxdt 0 τ u m (l,t) 0 l H 2 (x,t) u m (x,t)dxdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG1bWaaWba aSqabeaacaWGTbaaaOGaaGikaiaaicdacaaISaGaamiDaiaaiMcada WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSba aSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca WG1bWaaWbaaSqabeaacaWGTbaaaOGaaGikaiaadIhacaaISaGaamiD aiaaiMcacaWGKbGaamiEaiaadsgacaWG0bGaeyOeI0Yaa8qmaeqale aacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG1bWaaWbaaSqabeaa caWGTbaaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcadaWdXaqabS qaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG1bWaaW baaSqabeaacaWGTbaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca caWGKbGaamiEaiaadsgacaWG0bGaey4kaScaaa@7578@

+ 0 τ 0 l f (x,t) m (x,t)dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqa aiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGMbGaaGikaiaadIhaca aISaGaamiDaiaaiMcadaahaaWcbeqaaiaad2gaaaGccaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaamizaiaadshacaaIUa aaaa@4E1D@ (17)

В силу условий теоремы 1 существуют положительные числа a 0 , b 0 , c 0 , h 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIWaaabeaakiaaiYcacaWGIbWaaSbaaSqaaiaaicdaaeqa aOGaaGilaiaadogadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiAam aaBaaaleaacaaIWaaabeaaaaa@3F6D@ такие, что

a(x,t) a 0 , max Q ¯ T |c| c 0 , max [0,T] | α i , β i | b 0 , max i max [0,T] 0 l H i 2 dx h 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaeyyzImRaamyyamaaBaaaleaa caaIWaaabeaakiaaiYcadaGfqbqabSqaaiqadgfagaqeamaaBaaaba GaamivaaqabaaabeGcbaGaciyBaiaacggacaGG4baaaiaaiYhacaWG JbGaaGiFaiabgsMiJkaadogadaWgaaWcbaGaaGimaaqabaGccaaISa WaaybuaeqaleaacaaIBbGaaGimaiaaiYcacaWGubGaaGyxaaqabOqa aiGac2gacaGGHbGaaiiEaaaacaaI8bGaeqySde2aaSbaaSqaaiaadM gaaeqaaOGaaGilaiabek7aInaaBaaaleaacaWGPbaabeaakiaaiYha cqGHKjYOcaWGIbWaaSbaaSqaaiaaicdaaeqaaOGaaGilamaawafabe WcbaGaamyAaaqabOqaaiGac2gacaGGHbGaaiiEaaaadaGfqbqabSqa aiaaiUfacaaIWaGaaGilaiaadsfacaaIDbaabeGcbaGaciyBaiaacg gacaGG4baaamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipa kiaadIeadaqhaaWcbaGaamyAaaqaaiaaikdaaaGccaWGKbGaamiEai abgsMiJkaadIgadaWgaaWcbaGaaGimaaqabaGccaaIUaaaaa@781C@

Оценим правую часть равенства (17), применив неравенства Коши, Коши MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ Буняковского, учитывая условие (ii) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadM gacaWGPbGaaGykaaaa@3934@ Теоремы 1, а также используя неравенства, выведенные в [25]

0 τ ( u m (0,t)) 2 a 0 2 0 τ 0 l ( u x m (x,t)) 2 dxdt+ 2(2l+ a 0 ) a 0 l 0 τ 0 l ( u m ) 2 dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaaIOaGaamyDamaaCaaa leqabaGaamyBaaaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaaG ykamaaCaaaleqabaGaaGOmaaaakiabgsMiJoaalaaabaGaamyyamaa BaaaleaacaaIWaaabeaaaOqaaiaaikdaaaWaa8qmaeqaleaacaaIWa aabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWG SbaaniabgUIiYdGccaaIOaGaamyDamaaDaaaleaacaWG4baabaGaam yBaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGykamaaCaaa leqabaGaaGOmaaaakiaadsgacaWG4bGaamizaiaadshacqGHRaWkda WcaaqaaiaaikdacaaIOaGaaGOmaiaadYgacqGHRaWkcaWGHbWaaSba aSqaaiaaicdaaeqaaOGaaGykaaqaaiaadggadaWgaaWcbaGaaGimaa qabaGccaWGSbaaamaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGH RiI8aOWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG ikaiaadwhadaahaaWcbeqaaiaad2gaaaGccaaIPaWaaWbaaSqabeaa caaIYaaaaOGaamizaiaadIhacaWGKbGaamiDaiaaiYcaaaa@78F3@

0 τ ( u m (l,t) 2 ) a 0 2 0 τ 0 l ( u x m ) 2 dxdt+ 2(2l+ a 0 ) a 0 l 0 τ 0 l ( u m ) 2 dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaaIOaGaamyDamaaCaaa leqabaGaamyBaaaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaWaaW baaSqabeaacaaIYaaaaOGaaGykaiabgsMiJoaalaaabaGaamyyamaa BaaaleaacaaIWaaabeaaaOqaaiaaikdaaaWaa8qmaeqaleaacaaIWa aabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWG SbaaniabgUIiYdGccaaIOaGaamyDamaaDaaaleaacaWG4baabaGaam yBaaaakiaaiMcadaahaaWcbeqaaiaaikdaaaGccaWGKbGaamiEaiaa dsgacaWG0bGaey4kaSYaaSaaaeaacaaIYaGaaGikaiaaikdacaWGSb Gaey4kaSIaamyyamaaBaaaleaacaaIWaaabeaakiaaiMcaaeaacaWG HbWaaSbaaSqaaiaaicdaaeqaaOGaamiBaaaadaWdXaqabSqaaiaaic daaeaacqaHepaDa0Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaa dYgaa0Gaey4kIipakiaaiIcacaWG1bWaaWbaaSqabeaacaWGTbaaaO GaaGykamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG4bGaamizaiaa dshacaaISaaaaa@7519@

получим

0 l ( u m (x,τ) 2 dx+ a 0 0 τ 0 l ( u x m (x,t)) 2 dxdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaGikaiaadwhadaahaaWc beqaaiaad2gaaaGccaaIOaGaamiEaiaaiYcacqaHepaDcaaIPaWaaW baaSqabeaacaaIYaaaaOGaamizaiaadIhacqGHRaWkcaWGHbWaaSba aSqaaiaaicdaaeqaaOWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhani abgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGc caaIOaGaamyDamaaDaaaleaacaWG4baabaGaamyBaaaakiaaiIcaca WG4bGaaGilaiaadshacaaIPaGaaGykamaaCaaaleqabaGaaGOmaaaa kiaadsgacaWG4bGaamizaiaadshacqGHKjYOaaa@5EAD@

2 c 1 0 τ 0 l ( u x m (x,t)) 2 dxdt+2| 0 τ 0 l f(x,t) u m (x,t)dxdt|, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG OmaiaadogadaWgaaWcbaGaaGymaaqabaGcdaWdXaqabSqaaiaaicda aeaacqaHepaDa0Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaadY gaa0Gaey4kIipakiaaiIcacaWG1bWaa0baaSqaaiaadIhaaeaacaWG TbaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIPaWaaWbaaS qabeaacaaIYaaaaOGaamizaiaadIhacaWGKbGaamiDaiabgUcaRiaa ikdacaaI8bWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYd GcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGMbGa aGikaiaadIhacaaISaGaamiDaiaaiMcacaWG1bWaaWbaaSqabeaaca WGTbaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiE aiaadsgacaWG0bGaaGiFaiaaiYcaaaa@6C0A@ (18)

где

c 1 = c 0 + h 0 + 2(2l+ a 0 ) a 0 l . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIXaaabeaakiaai2dacaWGJbWaaSbaaSqaaiaaicdaaeqa aOGaey4kaSIaamiAamaaBaaaleaacaaIWaaabeaakiabgUcaRmaala aabaGaaGOmaiaaiIcacaaIYaGaamiBaiabgUcaRiaadggadaWgaaWc baGaaGimaaqabaGccaaIPaaabaGaamyyamaaBaaaleaacaaIWaaabe aakiaadYgaaaGaaGOlaaaa@4821@

Последнее слагаемое (18) оценим с помощью неравенства "Коши с ε MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdugaaa@379A@ " и получим

0 l ( u m (x,τ) 2 dx+ a 0 0 τ 0 l ( u x m (x,t)) 2 dxdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaGikaiaadwhadaahaaWc beqaaiaad2gaaaGccaaIOaGaamiEaiaaiYcacqaHepaDcaaIPaWaaW baaSqabeaacaaIYaaaaOGaamizaiaadIhacqGHRaWkcaWGHbWaaSba aSqaaiaaicdaaeqaaOWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhani abgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGc caaIOaGaamyDamaaDaaaleaacaWG4baabaGaamyBaaaakiaaiIcaca WG4bGaaGilaiaadshacaaIPaGaaGykamaaCaaaleqabaGaaGOmaaaa kiaadsgacaWG4bGaamizaiaadshacqGHKjYOaaa@5EAD@

c 2 0 τ 0 l ( u m (x,t)) 2 dxdt+ε 0 τ 0 l f 2 (x,t)dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam 4yamaaBaaaleaacaaIYaaabeaakmaapedabeWcbaGaaGimaaqaaiab es8a0bqdcqGHRiI8aOWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcq GHRiI8aOGaaGikaiaadwhadaahaaWcbeqaaiaad2gaaaGccaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaaiMcadaahaaWcbeqaaiaaikdaaa GccaWGKbGaamiEaiaadsgacaWG0bGaey4kaSIaeqyTdu2aa8qmaeqa leaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaic daaeaacaWGSbaaniabgUIiYdGccaWGMbWaaWbaaSqabeaacaaIYaaa aOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiaads gacaWG0bGaaGilaaaa@63F0@ (19)

где

c 2 =2 c 1 + 1 ε . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaai2dacaaIYaGaam4yamaaBaaaleaacaaI XaaabeaakiabgUcaRmaalaaabaGaaGymaaqaaiabew7aLbaacaaIUa aaaa@3F35@

Усилим неравенство (19), прибавив к его правой части слагаемое

c 2 a 0 0 τ 0 l (τt)( u x m (x,t )) 2 dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaadggadaWgaaWcbaGaaGimaaqabaGcdaWd XaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakmaapedabeWcba GaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiIcacqaHepaDcqGHsisl caWG0bGaaGykaiaaiIcacaWG1bWaa0baaSqaaiaadIhaaeaacaWGTb aaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIPaWaaWbaaSqa beaacaaIYaaaaOGaamizaiaadIhacaWGKbGaamiDaiaaiYcaaaa@554C@ что приводит к неравенству

0 l ( u m (x,τ) 2 dx+ a 0 0 τ 0 l ( u x m ) 2 dxdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaGikaiaadwhadaahaaWc beqaaiaad2gaaaGccaaIOaGaamiEaiaaiYcacqaHepaDcaaIPaWaaW baaSqabeaacaaIYaaaaOGaamizaiaadIhacqGHRaWkcaWGHbWaaSba aSqaaiaaicdaaeqaaOWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhani abgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGc caaIOaGaamyDamaaDaaaleaacaWG4baabaGaamyBaaaakiaaiMcada ahaaWcbeqaaiaaikdaaaGccaWGKbGaamiEaiaadsgacaWG0bGaeyiz Imkaaa@5A9C@

c 2 [ 0 τ 0 l ( u m ) 2 dxdt++ a 0 0 τ 0 l (τt)( u x m ) 2 dxdt]+ε 0 τ 0 l f 2 dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam 4yamaaBaaaleaacaaIYaaabeaakiaaiUfadaWdXaqabSqaaiaaicda aeaacqaHepaDa0Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaadY gaa0Gaey4kIipakiaaiIcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGa aGykamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG4bGaamizaiaads hacqGHRaWkcqGHRaWkcaWGHbWaaSbaaSqaaiaaicdaaeqaaOWaa8qm aeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaai aaicdaaeaacaWGSbaaniabgUIiYdGccaaIOaGaeqiXdqNaeyOeI0Ia amiDaiaaiMcacaaIOaGaamyDamaaDaaaleaacaWG4baabaGaamyBaa aakiaaiMcadaahaaWcbeqaaiaaikdaaaGccaWGKbGaamiEaiaadsga caWG0bGaaGyxaiabgUcaRiabew7aLnaapedabeWcbaGaaGimaaqaai abes8a0bqdcqGHRiI8aOWaa8qmaeqaleaacaaIWaaabaGaamiBaaqd cqGHRiI8aOGaamOzamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG4b GaamizaiaadshacaaIUaaaaa@7818@ (20)

Заметим, что справедливо равенство

τ 0 τ 0 l (τt)( u x m (x,t )) 2 dxdt= 0 τ 0 l ( u x m (x,t)) 2 dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITaeaacqGHciITcqaHepaDaaWaa8qmaeqaleaacaaIWaaabaGa eqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaani abgUIiYdGccaaIOaGaeqiXdqNaeyOeI0IaamiDaiaaiMcacaaIOaGa amyDamaaDaaaleaacaWG4baabaGaamyBaaaakiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaaGykamaaCaaaleqabaGaaGOmaaaakiaadsga caWG4bGaamizaiaadshacaaI9aWaa8qmaeqaleaacaaIWaaabaGaeq iXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniab gUIiYdGccaaIOaGaamyDamaaDaaaleaacaWG4baabaGaamyBaaaaki aaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGykamaaCaaaleqabaGa aGOmaaaakiaadsgacaWG4bGaamizaiaadshacaaISaaaaa@6CE7@

и поэтому к (20) можно применить лемму Гронуолла [26], что приводит к неравенству:

0 l ( u m (x,τ) 2 dx+ a 0 0 τ 0 l ( u x m ) 2 dxdtε e c 2 τ 0 τ 0 l f 2 dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaGikaiaadwhadaahaaWc beqaaiaad2gaaaGccaaIOaGaamiEaiaaiYcacqaHepaDcaaIPaWaaW baaSqabeaacaaIYaaaaOGaamizaiaadIhacqGHRaWkcaWGHbWaaSba aSqaaiaaicdaaeqaaOWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhani abgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGc caaIOaGaamyDamaaDaaaleaacaWG4baabaGaamyBaaaakiaaiMcada ahaaWcbeqaaiaaikdaaaGccaWGKbGaamiEaiaadsgacaWG0bGaeyiz ImQaeqyTduMaamyzamaaCaaaleqabaGaam4yamaaBaaabaGaaGOmaa qabaGaeqiXdqhaaOWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniab gUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGcca WGMbWaaWbaaSqabeaacaaIYaaaaOGaamizaiaadIhacaWGKbGaamiD aiaaiYcaaaa@6FDC@ (21)

которое выполняется для всех m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@36E5@ и для всех τ[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaG4waiaaicdacaaISaGaamivaiaai2faaaa@3D51@ , при этом правая его часть от m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@36E5@ не зависит. Тогда для решения задачи N, которое есть слабый предел последовательности { u m (x,t)}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaadw hadaahaaWcbeqaaiaad2gaaaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiaai2hacaaISaaaaa@3EE9@ справедливо неравенство

0 l (u (x,τ) 2 dx+ a 0 0 τ 0 l u x 2 (x,t)dxdtε e c 2 τ 0 τ 0 l f 2 (x,t)dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaGikaiaadwhacaaIOaGa amiEaiaaiYcacqaHepaDcaaIPaWaaWbaaSqabeaacaaIYaaaaOGaam izaiaadIhacqGHRaWkcaWGHbWaaSbaaSqaaiaaicdaaeqaaOWaa8qm aeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaai aaicdaaeaacaWGSbaaniabgUIiYdGccaWG1bWaa0baaSqaaiaadIha aeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKb GaamiEaiaadsgacaWG0bGaeyizImQaeqyTduMaamyzamaaCaaaleqa baGaam4yamaaBaaabaGaaGOmaaqabaGaeqiXdqhaaOWaa8qmaeqale aacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicda aeaacaWGSbaaniabgUIiYdGccaWGMbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiaadsga caWG0bGaaGOlaaaa@7449@ (22)

Из последнего неравенства имеем:

0 l u 2 dxε e c 2 τ ||f || L 2 ( Q T ) 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamyDamaaCaaaleqabaGa aGOmaaaakiaadsgacaWG4bGaeyizImQaeqyTduMaamyzamaaCaaale qabaGaam4yamaaBaaabaGaaGOmaaqabaGaeqiXdqhaaOGaaGiFaiaa iYhacaWGMbGaaGiFaiaaiYhadaqhaaWcbaGaamitamaaBaaabaGaaG OmaaqabaGaaGikaiaadgfadaWgaaqaaiaadsfaaeqaaiaaiMcaaeaa caaIYaaaaOGaaGilaaaa@513B@

a 0 0 l 0 τ u x 2 dxdtε e c 2 τ ||f || L 2 ( Q T ) 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIWaaabeaakmaapedabeWcbaGaaGimaaqaaiaadYgaa0Ga ey4kIipakmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aO GaamyDamaaDaaaleaacaWG4baabaGaaGOmaaaakiaadsgacaWG4bGa amizaiaadshacqGHKjYOcqaH1oqzcaWGLbWaaWbaaSqabeaacaWGJb WaaSbaaeaacaaIYaaabeaacqaHepaDaaGccaaI8bGaaGiFaiaadAga caaI8bGaaGiFamaaDaaaleaacaWGmbWaaSbaaeaacaaIYaaabeaaca aIOaGaamyuamaaBaaabaGaamivaaqabaGaaGykaaqaaiaaikdaaaGc caaIUaaaaa@5AA5@

Интегрируя первое из них по (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaic dacaaISaGaamivaiaaiMcaaaa@39A1@ , извлекая квадратный корень, а затем складывая, получим

||u || W 2 1,0 ( Q T ) εM ||f || L 2 ( Q T ) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaaiY hacaWG1bGaaGiFaiaaiYhadaWgaaWcbaGaam4vamaaDaaabaGaaGOm aaqaaiaaigdacaaISaGaaGimaaaacaaIOaGaamyuamaaBaaabaGaam ivaaqabaGaaGykaaqabaGccqGHKjYOdaGcaaqaaiabew7aLjaad2ea aSqabaGccaaI8bGaaGiFaiaadAgacaaI8bGaaGiFamaaBaaaleaaca WGmbWaaSbaaeaacaaIYaaabeaacaaIOaGaamyuamaaBaaabaGaamiv aaqabaGaaGykaaqabaGccaaISaaaaa@517A@ (23)

где

M=max{ e c 2 T a 0 , e c 2 T 1 c 2 }. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaai2 daciGGTbGaaiyyaiaacIhacaaI7bWaaSaaaeaacaWGLbWaaWbaaSqa beaacaWGJbWaaSbaaeaacaaIYaaabeaacaWGubaaaaGcbaGaamyyam aaBaaaleaacaaIWaaabeaaaaGccaaISaWaaSaaaeaacaWGLbWaaWba aSqabeaacaWGJbWaaSbaaeaacaaIYaaabeaacaWGubaaaOGaeyOeI0 IaaGymaaqaaiaadogadaWgaaWcbaGaaGOmaaqabaaaaOGaaGyFaiaa i6caaaa@4AD0@

Вернемся к обратной задаче. Для каждого n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36E6@ функция u n (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@3C27@ является решением прямой задачи с правой частью f(x,t) r n (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaamOCamaaBaaaleaacaWGUbaa beaakiaaiIcacaWG0bGaaGykaaaa@3F6D@ , но тогда справедливо неравенство (23) и, учитывая, что max Q ¯ T |f(x,t)| k k, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aaceWGrbGbaebadaWgaaqaaiaadsfaaeqaaaqabOqaaiGac2gacaGG HbGaaiiEaaaacaaI8bGaamOzaiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaaGiFaiabgsMiJoaakaaabaGaam4AaaWcbeaakiaadUgacaaI Saaaaa@46AB@ получим

||u || W 2 1,0 ( Q T ) kM ε || r n || L 2 (0,T) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaaiY hacaWG1bGaaGiFaiaaiYhadaWgaaWcbaGaam4vamaaDaaabaGaaGOm aaqaaiaaigdacaaISaGaaGimaaaacaaIOaGaamyuamaaBaaabaGaam ivaaqabaGaaGykaaqabaGccqGHKjYOdaGcaaqaaiaadUgacaWGnbaa leqaaOWaaOaaaeaacqaH1oqzaSqabaGccaaI8bGaaGiFaiaadkhada WgaaWcbaGaamOBaaqabaGccaaI8bGaaGiFamaaBaaaleaacaWGmbWa aSbaaeaacaaIYaaabeaacaaIOaGaaGimaiaaiYcacaWGubGaaGykaa qabaGccaaIUaaaaa@543F@ (24)

Из равенства (23) следует неравенство

r n 2 (t)= 1 E 2 (t) ( 0 l u n1 (x,t)dx) 2 E 0 l 0 l u n1 2 dx, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaDa aaleaacaWGUbaabaGaaGOmaaaakiaaiIcacaWG0bGaaGykaiaai2da daWcaaqaaiaaigdaaeaacaWGfbWaaWbaaSqabeaacaaIYaaaaOGaaG ikaiaadshacaaIPaaaaiaaiIcadaWdXaqabSqaaiaaicdaaeaacaWG SbaaniabgUIiYdGccaWG1bWaaSbaaSqaaiaad6gacqGHsislcaaIXa aabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIha caaIPaWaaWbaaSqabeaacaaIYaaaaOGaeyizImQaamyramaaBaaale aacaaIWaaabeaakiaadYgadaWdXaqabSqaaiaaicdaaeaacaWGSbaa niabgUIiYdGccaWG1bWaa0baaSqaaiaad6gacqGHsislcaaIXaaaba GaaGOmaaaakiaadsgacaWG4bGaaGilaaaa@6037@

интегрируя которое получим

0 T r n 2 (t)dt E 0 l 0 T 0 l u n1 2 dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamOCamaaDaaaleaacaWG UbaabaGaaGOmaaaakiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaey izImQaamyramaaBaaaleaacaaIWaaabeaakiaadYgadaWdXaqabSqa aiaaicdaaeaacaWGubaaniabgUIiYdGcdaWdXaqabSqaaiaaicdaae aacaWGSbaaniabgUIiYdGccaWG1bWaa0baaSqaaiaad6gacqGHsisl caaIXaaabaGaaGOmaaaakiaadsgacaWG4bGaamizaiaadshacaaIUa aaaa@55E5@

откуда следует неравенство

|| r n || L 2 ( Q T ) E 0 l || u n1 || W 2 1,0 ( Q T ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaaiY hacaWGYbWaaSbaaSqaaiaad6gaaeqaaOGaaGiFaiaaiYhadaWgaaWc baGaamitamaaBaaabaGaaGOmaaqabaGaaGikaiaadgfadaWgaaqaai aadsfaaeqaaiaaiMcaaeqaaOGaeyizIm6aaOaaaeaacaWGfbWaaSba aSqaaiaaicdaaeqaaOGaamiBaaWcbeaakiaaiYhacaaI8bGaamyDam aaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaaI8bGaaGiFamaa BaaaleaacaWGxbWaa0baaeaacaaIYaaabaGaaGymaiaaiYcacaaIWa aaaiaaiIcacaWGrbWaaSbaaeaacaWGubaabeaacaaIPaaabeaakiaa i6caaaa@55B4@ (25)

Из (24) и (25) следует:

|| u n || W 2 1,0 ( Q T ) kM ε E 0 l || u n1 || W 2 1,0 ( Q T ) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaaiY hacaWG1bWaaSbaaSqaaiaad6gaaeqaaOGaaGiFaiaaiYhadaWgaaWc baGaam4vamaaDaaabaGaaGOmaaqaaiaaigdacaaISaGaaGimaaaaca aIOaGaamyuamaaBaaabaGaamivaaqabaGaaGykaaqabaGccqGHKjYO daGcaaqaaiaadUgacaWGnbaaleqaaOWaaOaaaeaacqaH1oqzaSqaba GcdaGcaaqaaiaadweadaWgaaWcbaGaaGimaaqabaGccaWGSbaaleqa aOGaaGiFaiaaiYhacaWG1bWaaSbaaSqaaiaad6gacqGHsislcaaIXa aabeaakiaaiYhacaaI8bWaaSbaaSqaaiaadEfadaqhaaqaaiaaikda aeaacaaIXaGaaGilaiaaicdaaaGaaGikaiaadgfadaWgaaqaaiaads faaeqaaiaaiMcaaeqaaOGaaGilaaaa@5B9F@

|| r n || L 2 (0,T) kM ε E 0 l || r n1 || L 2 ((0,T) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaaiY hacaWGYbWaaSbaaSqaaiaad6gaaeqaaOGaaGiFaiaaiYhadaWgaaWc baGaamitamaaBaaabaGaaGOmaaqabaGaaGikaiaaicdacaaISaGaam ivaiaaiMcaaeqaaOGaeyizIm6aaOaaaeaacaWGRbGaamytaaWcbeaa kmaakaaabaGaeqyTdugaleqaaOWaaOaaaeaacaWGfbWaaSbaaSqaai aaicdaaeqaaOGaamiBaaWcbeaakiaaiYhacaaI8bGaamOCamaaBaaa leaacaWGUbGaeyOeI0IaaGymaaqabaGccaaI8bGaaGiFamaaBaaale aacaWGmbWaaSbaaeaacaaIYaaabeaacaaIOaGaaGikaiaaicdacaaI SaGaamivaiaaiMcaaeqaaOGaaGOlaaaa@58D1@

Обозначим

s= Mk E 0 l . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiaai2 dadaGcaaqaaiaad2eacaWGRbGaamyramaaBaaaleaacaaIWaaabeaa kiaadYgaaSqabaGccaaIUaaaaa@3CFC@

Тогда

|| u n || W 2 1,0 ( Q T ) s ε || u n1 || W 2 1,0 ( Q T ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaaiY hacaWG1bWaaSbaaSqaaiaad6gaaeqaaOGaaGiFaiaaiYhadaWgaaWc baGaam4vamaaDaaabaGaaGOmaaqaaiaaigdacaaISaGaaGimaaaaca aIOaGaamyuamaaBaaabaGaamivaaqabaGaaGykaaqabaGccqGHKjYO caWGZbWaaOaaaeaacqaH1oqzaSqabaGccaaI8bGaaGiFaiaadwhada WgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaaGiFaiaaiYhadaWg aaWcbaGaam4vamaaDaaabaGaaGOmaaqaaiaaigdacaaISaGaaGimaa aacaaIOaGaamyuamaaBaaabaGaamivaaqabaGaaGykaaqabaGccaaI Uaaaaa@57E2@ (26)

|| r n || L 2 ((0,T)) s ε || r n1 || L 2 (0,T) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaaiY hacaWGYbWaaSbaaSqaaiaad6gaaeqaaOGaaGiFaiaaiYhadaWgaaWc baGaamitamaaBaaabaGaaGOmaaqabaGaaGikaiaaiIcacaaIWaGaaG ilaiaadsfacaaIPaGaaGykaaqabaGccqGHKjYOcaWGZbWaaOaaaeaa cqaH1oqzaSqabaGccaaI8bGaaGiFaiaadkhadaWgaaWcbaGaamOBai abgkHiTiaaigdaaeqaaOGaaGiFaiaaiYhadaWgaaWcbaGaamitamaa BaaabaGaaGOmaaqabaGaaGikaiaaicdacaaISaGaamivaiaaiMcaae qaaOGaaGOlaaaa@55C5@ (27)

Выберем ε MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdugaaa@379A@ так, чтобы s ε <1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Camaaka aabaGaeqyTdugaleqaaOGaaGipaiaaigdaaaa@3A38@ . Тогда (26) и (27) образуют бесконечно убывающие геометрические прогрессии, а значит, сходятся при n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgk ziUkabg6HiLcaa@3A44@ . Из этого следует, что обе последовательности { u n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaadw hadaWgaaWcbaGaamOBaaqabaGccaaI9baaaa@3A22@ и { r n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaadk hadaWgaaWcbaGaamOBaaqabaGccaaI9baaaa@3A1F@ сходятся по норме в соответствующих пространствах, и предел каждой последовательности единственный. Но из сильной сходимости (по норме) следует слабая сходимость. Переходя к пределу в (14) и (15), получаем, что предельные функции u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3AFE@ и r(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGykaaaa@3948@ образуют решение задачи R.

Покажем теперь, что некоторые дополнительные условия гарантируют принадлежность u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI Giodaa@3871@ W 2 1,1 Q T ,r W 2 1 (0,T). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyicI4Saam 4vamaaDaaaleaacaaIYaaabaGaaGymaiaaiYcacaaIXaaaaOGaamyu amaaBaaaleaacaWGubaabeaakiaaiYcacaaMe8UaaGjbVlaadkhacq GHiiIZcaWGxbWaa0baaSqaaiaaikdaaeaacaaIXaaaaOGaaGikaiaa icdacaaISaGaamivaiaaiMcacaaIUaaaaa@4A92@

Лемма 2. Условия теоремы 1 гарантируют принадлежность решения задачи R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaaaa@36CA@ пространству W 2 1,1 ( Q T ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaaIYaaabaGaaGymaiaaiYcacaaIXaaaaOGaaGikaiaadgfa daWgaaWcbaGaamivaaqabaGccaaIPaGaaGOlaaaa@3DF0@

Доказательство. Так как каждое приближенное решение u n (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@3C27@ задачи R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaaaa@36CA@ определяется через решение прямой задачи N, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaaiY caaaa@377C@ то достаточно показать, что решение прямой задачи принадлежит W 2 1,1 ( Q T ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaaIYaaabaGaaGymaiaaiYcacaaIXaaaaOGaaGikaiaadgfa daWgaaWcbaGaamivaaqabaGccaaIPaGaaGOlaaaa@3DF0@ Умножим каждое из равенств (16) на c im '(t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGPbGaamyBaaqabaGccaaINaGaaGikaiaadshacaaIPaGa aGilaaaa@3CB6@ просуммируем по i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E1@ от 1 до m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@36E5@ , а затем проинтегрируем по t(0,τ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiIcacaaIWaGaaGilaiabes8a0jaaiMcacaaIUaaaaa@3DC2@ Получим

0 τ 0 l [( u t m ) 2 +a u x m u xt m +c u m u t m ]dxdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicda aeaacaWGSbaaniabgUIiYdGccaaIBbGaaGikaiaadwhadaqhaaWcba GaamiDaaqaaiaad2gaaaGccaaIPaWaaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaamyyaiaadwhadaqhaaWcbaGaamiEaaqaaiaad2gaaaGcca WG1bWaa0baaSqaaiaadIhacaWG0baabaGaamyBaaaakiabgUcaRiaa dogacaWG1bWaaWbaaSqabeaacaWGTbaaaOGaamyDamaaDaaaleaaca WG0baabaGaamyBaaaakiaai2facaWGKbGaamiEaiaadsgacaWG0bGa eyOeI0caaa@5A84@

0 τ u t m (0,t)[ α 1 (t) u t m (0,t)+ β 1 (t) u t m (l,t)+ 0 l H 1 (x,t) u m (x,t)dx]dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG1bWaa0ba aSqaaiaadshaaeaacaWGTbaaaOGaaGikaiaaicdacaaISaGaamiDai aaiMcacaaIBbGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiaa dshacaaIPaGaamyDamaaDaaaleaacaWG0baabaGaamyBaaaakiaaiI cacaaIWaGaaGilaiaadshacaaIPaGaey4kaSIaeqOSdi2aaSbaaSqa aiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaamyDamaaDaaaleaaca WG0baabaGaamyBaaaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGa ey4kaSYaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam isamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaamizaiaadIhacaaIDbGaamizaiaadshacqGH RaWkaaa@7282@

+ 0 τ u t m (l,t)[ α 2 (t) u m (0,t)+ β 2 (t) u m (l,t+) 0 l H 2 (x,t) u m (x,t)dx]dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG1bWaa0ba aSqaaiaadshaaeaacaWGTbaaaOGaaGikaiaadYgacaaISaGaamiDai aaiMcacaaIBbGaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaa dshacaaIPaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaaIWa GaaGilaiaadshacaaIPaGaey4kaSIaeqOSdi2aaSbaaSqaaiaaikda aeqaaOGaaGikaiaadshacaaIPaGaamyDamaaCaaaleqabaGaamyBaa aakiaaiIcacaWGSbGaaGilaiaadshacqGHRaWkcaaIPaWaa8qmaeqa leaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamisamaaBaaaleaaca aIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamyDamaa CaaaleqabaGaamyBaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaamizaiaadIhacaaIDbGaamizaiaadshacaaI9aaaaa@70A4@

= 0 τ 0 l f(x,t) u t m (x,t)dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaa caaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaamyDamaaDaaaleaacaWG0baabaGaamyBaaaa kiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhacaWGKb GaamiDaiaai6caaaa@4FF5@ (28)

Преобразуем (28), интегрируя некоторые из слагаемых.

1) 0 τ 0 l a u x m u xt m dxdt= 1 2 0 τ 0 l a t ( u x m ) 2 dxdt+ 1 2 0 l a( u x m (x,τ) 2 dx; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiM cacaaMe8UaaGjbVpaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGH RiI8aOWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam yyaiaadwhadaqhaaWcbaGaamiEaaqaaiaad2gaaaGccaWG1bWaa0ba aSqaaiaadIhacaWG0baabaGaamyBaaaakiaadsgacaWG4bGaamizai aadshacaaI9aGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaadaWd XaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakmaapedabeWcba GaaGimaaqaaiaadYgaa0Gaey4kIipakiaadggadaWgaaWcbaGaamiD aaqabaGccaaIOaGaamyDamaaDaaaleaacaWG4baabaGaamyBaaaaki aaiMcadaahaaWcbeqaaiaaikdaaaGccaWGKbGaamiEaiaadsgacaWG 0bGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXaqabSqaai aaicdaaeaacaWGSbaaniabgUIiYdGccaWGHbGaaGikaiaadwhadaqh aaWcbaGaamiEaaqaaiaad2gaaaGccaaIOaGaamiEaiaaiYcacqaHep aDcaaIPaWaaWbaaSqabeaacaaIYaaaaOGaamizaiaadIhacaaI7aGa aGzbVlaaywW7daWgaaWcbaaabeaakiaaywW7caaMf8+aaSbaaSqaaa qabaGccaaMf8+aaSbaaSqaaaqabaaaaa@81EF@

2) 0 τ α 1 (t) u t m (0,t) u m (0,t)dt= 1 2 0 τ α (t)( u m (0,t )) 2 dt 1 2 α 1 (τ)( u m (0,τ )) 2 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiM cacaaMe8UaaGjbVlabgkHiTmaapedabeWcbaGaaGimaaqaaiabes8a 0bqdcqGHRiI8aOGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaGikai aadshacaaIPaGaamyDamaaDaaaleaacaWG0baabaGaamyBaaaakiaa iIcacaaIWaGaaGilaiaadshacaaIPaGaamyDamaaCaaaleqabaGaam yBaaaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamizaiaadsha caaI9aWaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXaqabSqaaiaaic daaeaacqaHepaDa0Gaey4kIipakiqbeg7aHzaafaGaaGikaiaadsha caaIPaGaaGikaiaadwhadaahaaWcbeqaaiaad2gaaaGccaaIOaGaaG imaiaaiYcacaWG0bGaaGykaiaaiMcadaahaaWcbeqaaiaaikdaaaGc caWGKbGaamiDaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaeq ySde2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiabes8a0jaaiMcacaaI OaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaaIWaGaaGilai abes8a0jaaiMcacaaIPaWaaWbaaSqabeaacaaIYaaaaOGaaG4oaiaa ywW7daWgaaWcbaaabeaaaaa@7CBE@

3) 0 τ α 2 (t) u m (0,t) u t m (l,t)dt= 0 τ α 2 (t) u t m (0,t) u m (l,t)dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaaiM cacaaMe8UaaGjbVpaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGH RiI8aOGaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshaca aIPaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaaIWaGaaGil aiaadshacaaIPaGaamyDamaaDaaaleaacaWG0baabaGaamyBaaaaki aaiIcacaWGSbGaaGilaiaadshacaaIPaGaamizaiaadshacaaI9aGa eyOeI0Yaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccq aHXoqydaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiMcacaWG 1bWaa0baaSqaaiaadshaaeaacaWGTbaaaOGaaGikaiaaicdacaaISa GaamiDaiaaiMcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGaaGikaiaa dYgacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiabgkHiTiaaywW7da WgaaWcbaaabeaakiaaywW7caaMf8+aaSbaaSqaaaqabaGccaaMf8Ua aGzbVlaaywW7caaMf8UaaGzbVpaaBaaaleaaaeqaaaaa@7B52@

0 τ α 2 u m (0,t) u m (l,t)dt+ α 2 (τ) u m (0,τ) u m (l,τ); MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccuaHXoqygaqb amaaBaaaleaacaaIYaaabeaakiaadwhadaahaaWcbeqaaiaad2gaaa GccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaadwhadaahaaWcbeqa aiaad2gaaaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiaadsgaca WG0bGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiab es8a0jaaiMcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGaaGikaiaaic dacaaISaGaeqiXdqNaaGykaiaadwhadaahaaWcbeqaaiaad2gaaaGc caaIOaGaamiBaiaaiYcacqaHepaDcaaIPaGaaG4oaaaa@613E@

4) 0 τ β 2 (t) u t m (l,t) u m (l,t)dt= 1 2 0 τ β 2 (t)( u m (l,t )) 2 dt+ 1 2 β 2 (τ)( u m (l,τ )) 2 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaaiM cacaaMe8UaaGjbVpaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGH RiI8aOGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshaca aIPaGaamyDamaaDaaaleaacaWG0baabaGaamyBaaaakiaaiIcacaWG SbGaaGilaiaadshacaaIPaGaamyDamaaCaaaleqabaGaamyBaaaaki aaiIcacaWGSbGaaGilaiaadshacaaIPaGaamizaiaadshacaaI9aGa eyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXaqabSqaaiaaic daaeaacqaHepaDa0Gaey4kIipakiqbek7aIzaafaWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadshacaaIPaGaaGikaiaadwhadaahaaWcbe qaaiaad2gaaaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiaaiMca daahaaWcbeqaaiaaikdaaaGccaWGKbGaamiDaiabgUcaRmaalaaaba GaaGymaaqaaiaaikdaaaGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGa aGikaiabes8a0jaaiMcacaaIOaGaamyDamaaCaaaleqabaGaamyBaa aakiaaiIcacaWGSbGaaGilaiabes8a0jaaiMcacaaIPaWaaWbaaSqa beaacaaIYaaaaOGaaG4oaiaaywW7caaMf8+aaSbaaSqaaaqabaaaaa@8019@

5) 0 τ u t m (0,t) 0 l H 1 (x,t) u m (x,t)dxdt= 0 τ u m (0,t) 0 l H 1 (x,t) u t m (x,t)dxdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynaiaaiM cacaaMe8UaaGjbVlabgkHiTmaapedabeWcbaGaaGimaaqaaiabes8a 0bqdcqGHRiI8aOGaamyDamaaDaaaleaacaWG0baabaGaamyBaaaaki aaiIcacaaIWaGaaGilaiaadshacaaIPaWaa8qmaeqaleaacaaIWaaa baGaamiBaaqdcqGHRiI8aOGaamisamaaBaaaleaacaaIXaaabeaaki aaiIcacaWG4bGaaGilaiaadshacaaIPaGaamyDamaaCaaaleqabaGa amyBaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadI hacaWGKbGaamiDaiaai2dadaWdXaqabSqaaiaaicdaaeaacqaHepaD a0Gaey4kIipakiaadwhadaahaaWcbeqaaiaad2gaaaGccaaIOaGaaG imaiaaiYcacaWG0bGaaGykamaapedabeWcbaGaaGimaaqaaiaadYga a0Gaey4kIipakiaadIeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaam iEaiaaiYcacaWG0bGaaGykaiaadwhadaqhaaWcbaGaamiDaaqaaiaa d2gaaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4b GaamizaiaadshacqGHRaWkaaa@7BA3@

+ 0 τ u m (0,t) 0 l H 1t (x,t) u m (x,t)dxdt u m (0,τ) 0 l H 1 (x,τ) u m (x,τ)dx; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG1bWaaWba aSqabeaacaWGTbaaaOGaaGikaiaaicdacaaISaGaamiDaiaaiMcada WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSba aSqaaiaaigdacaWG0baabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamizaiaadIhacaWGKbGaamiDaiabgkHiTiaadw hadaahaaWcbeqaaiaad2gaaaGccaaIOaGaaGimaiaaiYcacqaHepaD caaIPaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam isamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiabes8a 0jaaiMcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGaaGikaiaadIhaca aISaGaeqiXdqNaaGykaiaadsgacaWG4bGaaG4oaaaa@71EB@

6) 0 τ u t m (l,t) 0 l H 2 (x,t) u m (x,t)dxdt= 0 τ u m (l,t) 0 l H 2 (x,t) u t m (x,t)dxdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaiM cacaaMe8UaaGjbVlabgkHiTmaapedabeWcbaGaaGimaaqaaiabes8a 0bqdcqGHRiI8aOGaamyDamaaDaaaleaacaWG0baabaGaamyBaaaaki aaiIcacaWGSbGaaGilaiaadshacaaIPaWaa8qmaeqaleaacaaIWaaa baGaamiBaaqdcqGHRiI8aOGaamisamaaBaaaleaacaaIYaaabeaaki aaiIcacaWG4bGaaGilaiaadshacaaIPaGaamyDamaaCaaaleqabaGa amyBaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadI hacaWGKbGaamiDaiaai2dadaWdXaqabSqaaiaaicdaaeaacqaHepaD a0Gaey4kIipakiaadwhadaahaaWcbeqaaiaad2gaaaGccaaIOaGaam iBaiaaiYcacaWG0bGaaGykamaapedabeWcbaGaaGimaaqaaiaadYga a0Gaey4kIipakiaadIeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam iEaiaaiYcacaWG0bGaaGykaiaadwhadaqhaaWcbaGaamiDaaqaaiaa d2gaaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4b GaamizaiaadshacqGHRaWkaaa@7C14@

+ 0 τ u m (l,t) 0 l H 2t (x,t) u m (x,t)dxdt u m (l,τ) 0 l H 2 (x,τ) u m (x,τ)dx. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG1bWaaWba aSqabeaacaWGTbaaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcada WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSba aSqaaiaaikdacaWG0baabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamizaiaadIhacaWGKbGaamiDaiabgkHiTiaadw hadaahaaWcbeqaaiaad2gaaaGccaaIOaGaamiBaiaaiYcacqaHepaD caaIPaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam isamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiabes8a 0jaaiMcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGaaGikaiaadIhaca aISaGaeqiXdqNaaGykaiaadsgacaWG4bGaaGOlaaaa@724E@

Подставим полученные выражения в (28), учтя условие α 2 (t)+ β 1 (t)=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaey4kaSIaeqOS di2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaaGypai aaicdacaaIUaaaaa@42ED@

0 τ 0 l [( u t m ) 2 + 1 2 0 l a( u x m (x,τ) 2 dx= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicda aeaacaWGSbaaniabgUIiYdGccaaIBbGaaGikaiaadwhadaqhaaWcba GaamiDaaqaaiaad2gaaaGccaaIPaWaaWbaaSqabeaacaaIYaaaaOGa ey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXaqabSqaaiaaic daaeaacaWGSbaaniabgUIiYdGccaWGHbGaaGikaiaadwhadaqhaaWc baGaamiEaaqaaiaad2gaaaGccaaIOaGaamiEaiaaiYcacqaHepaDca aIPaWaaWbaaSqabeaacaaIYaaaaOGaamizaiaadIhacaaI9aaaaa@585B@

= 1 2 0 τ 0 l a t ( u x m ) 2 dxdt 0 τ 0 l c u m u t m dxdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaala aabaGaaGymaaqaaiaaikdaaaWaa8qmaeqaleaacaaIWaaabaGaeqiX dqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgU IiYdGccaWGHbWaaSbaaSqaaiaadshaaeqaaOGaaGikaiaadwhadaqh aaWcbaGaamiEaaqaaiaad2gaaaGccaaIPaWaaWbaaSqabeaacaaIYa aaaOGaamizaiaadIhacaWGKbGaamiDaiabgkHiTmaapedabeWcbaGa aGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaacaaIWaaaba GaamiBaaqdcqGHRiI8aOGaam4yaiaadwhadaahaaWcbeqaaiaad2ga aaGccaWG1bWaa0baaSqaaiaadshaaeaacaWGTbaaaOGaamizaiaadI hacaWGKbGaamiDaiabgkHiTaaa@6083@

1 2 0 τ α 1 (t)( u m (0,t )) 2 dt+ 1 2 0 τ β 2 (t)( u m (l,t )) 2 dt+ 0 tau α 2 (t) u m (0,t) u m (l,t)dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaIXaaabaGaaGOmaaaadaWdXaqabSqaaiaaicdaaeaacqaH epaDa0Gaey4kIipakiqbeg7aHzaafaWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaGaaGikaiaadwhadaahaaWcbeqaaiaad2ga aaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaaiMcadaahaaWcbe qaaiaaikdaaaGccaWGKbGaamiDaiabgUcaRmaalaaabaGaaGymaaqa aiaaikdaaaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYd GccqaHYoGydaWgaaWcbaGabGOmayaafaaabeaakiaaiIcacaWG0bGa aGykaiaaiIcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGaaGikaiaadY gacaaISaGaamiDaiaaiMcacaaIPaWaaWbaaSqabeaacaaIYaaaaOGa amizaiaadshacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWG0bGaam yyaiaadwhaa0Gaey4kIipakiqbeg7aHzaafaWaaSbaaSqaaiaaikda aeqaaOGaaGikaiaadshacaaIPaGaamyDamaaCaaaleqabaGaamyBaa aakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamyDamaaCaaaleqa baGaamyBaaaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaamizai aadshacqGHRaWkaaa@7D3B@

+ 1 2 α 1 (τ)( u m (0,τ )) 2 α 2 (τ) u m (0,τ) u m (l,τ) 1 2 β 2 (τ)( u m (l,τ )) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaS aaaeaacaaIXaaabaGaaGOmaaaacqaHXoqydaWgaaWcbaGaaGymaaqa baGccaaIOaGaeqiXdqNaaGykaiaaiIcacaWG1bWaaWbaaSqabeaaca WGTbaaaOGaaGikaiaaicdacaaISaGaeqiXdqNaaGykaiaaiMcadaah aaWcbeqaaiaaikdaaaGccqGHsislcqaHXoqydaWgaaWcbaGaaGOmaa qabaGccaaIOaGaeqiXdqNaaGykaiaadwhadaahaaWcbeqaaiaad2ga aaGccaaIOaGaaGimaiaaiYcacqaHepaDcaaIPaGaamyDamaaCaaale qabaGaamyBaaaakiaaiIcacaWGSbGaaGilaiabes8a0jaaiMcacqGH sisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabek7aInaaBaaaleaaca aIYaaabeaakiaaiIcacqaHepaDcaaIPaGaaGikaiaadwhadaahaaWc beqaaiaad2gaaaGccaaIOaGaamiBaiaaiYcacqaHepaDcaaIPaGaaG ykamaaCaaaleqabaGaaGOmaaaakiabgkHiTaaa@6DEE@

0 τ u m (0,t) 0 l H 1 (x,t) u t m (x,t)dxdt 0 τ u m (0,t) 0 l H 1t (x,t) u m (x,t)dxdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG1bWaaWba aSqabeaacaWGTbaaaOGaaGikaiaaicdacaaISaGaamiDaiaaiMcada WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSba aSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca WG1bWaa0baaSqaaiaadshaaeaacaWGTbaaaOGaaGikaiaadIhacaaI SaGaamiDaiaaiMcacaWGKbGaamiEaiaadsgacaWG0bGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG1bWaaWba aSqabeaacaWGTbaaaOGaaGikaiaaicdacaaISaGaamiDaiaaiMcada WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSba aSqaaiaaigdacaWG0baabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamizaiaadIhacaWGKbGaamiDaiabgUcaRaaa@773D@

+ u m (0,τ) 0 l H 1 (x,τ) u m (x,τ)dx+ 0 τ u m (l,t) 0 l H 2 (x,t) u t m (x,t)dxdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaam yDamaaCaaaleqabaGaamyBaaaakiaaiIcacaaIWaGaaGilaiabes8a 0jaaiMcadaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGcca WGibWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaeqiX dqNaaGykaiaadwhadaahaaWcbeqaaiaad2gaaaGccaaIOaGaamiEai aaiYcacqaHepaDcaaIPaGaamizaiaadIhacqGHRaWkdaWdXaqabSqa aiaaicdaaeaacqaHepaDa0Gaey4kIipakiaadwhadaahaaWcbeqaai aad2gaaaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykamaapedabeWc baGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadIeadaWgaaWcbaGaaG OmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhadaqh aaWcbaGaamiDaaqaaiaad2gaaaGccaaIOaGaamiEaiaaiYcacaWG0b GaaGykaiaadsgacaWG4bGaamizaiaadshacqGHsislaaa@7240@

0 τ u m (l,t) 0 l H 2t (x,t) u m (x,t)dxdt+ u m (l,τ) 0 l H 2 (x,τ) u m (x,τ)dx+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG1bWaaWba aSqabeaacaWGTbaaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcada WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSba aSqaaiaaikdacaWG0baabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaamyDamaaCaaaleqabaGaamyBaaaakiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamizaiaadIhacaWGKbGaamiDaiabgUcaRiaadw hadaahaaWcbeqaaiaad2gaaaGccaaIOaGaamiBaiaaiYcacqaHepaD caaIPaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam isamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiabes8a 0jaaiMcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGaaGikaiaadIhaca aISaGaeqiXdqNaaGykaiaadsgacaWG4bGaey4kaScaaa@7278@

+ 0 τ 0 l f(x,t) u t m (x,t)dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqa aiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGMbGaaGikaiaadIhaca aISaGaamiDaiaaiMcacaWG1bWaa0baaSqaaiaadshaaeaacaWGTbaa aOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiaads gacaWG0bGaaGOlaaaa@5010@ (29)

Оценим правую часть равенства (29), учитывая условие теоремы α 1 (t) ξ 2 2 α 2 (t)ξη β 2 (t) η 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaeqOVdG3aaWba aSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiabeg7aHnaaBaaaleaaca aIYaaabeaakiaaiIcacaWG0bGaaGykaiabe67a4jabeE7aOjabgkHi Tiabek7aInaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykai abeE7aOnaaCaaaleqabaGaaGOmaaaakiabgsMiJkaaicdaaaa@528A@ и применяя неравенства Коши, Коши с ε, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ilaaaa@3850@ Коши MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ Буняковского:

| 0 τ 0 l c u m u t m dxdt| ε 2 0 τ 0 l ( u t m ) 2 + c 0 2 2ε 0 τ 0 l ( u m ) 2 dxdt; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaape dabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaa caaIWaaabaGaamiBaaqdcqGHRiI8aOGaam4yaiaadwhadaahaaWcbe qaaiaad2gaaaGccaWG1bWaa0baaSqaaiaadshaaeaacaWGTbaaaOGa amizaiaadIhacaWGKbGaamiDaiaaiYhacqGHKjYOdaWcaaqaaiabew 7aLbqaaiaaikdaaaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniab gUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGcca aIOaGaamyDamaaDaaaleaacaWG0baabaGaamyBaaaakiaaiMcadaah aaWcbeqaaiaaikdaaaGccqGHRaWkdaWcaaqaaiaadogadaqhaaWcba GaaGimaaqaaiaaikdaaaaakeaacaaIYaGaeqyTdugaamaapedabeWc baGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaacaaIWa aabaGaamiBaaqdcqGHRiI8aOGaaGikaiaadwhadaahaaWcbeqaaiaa d2gaaaGccaaIPaWaaWbaaSqabeaacaaIYaaaaOGaamizaiaadIhaca WGKbGaamiDaiaaiUdaaaa@7432@

| 0 τ u m (0,t) 0 l H 1 u t m dxdt| h 0 2 ε 0 τ 0 l ( u t m ) 2 dxdt+ 1 2ε 0 τ ( u m (0,t)) 2 dt; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaape dabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaamyDamaaCaaa leqabaGaamyBaaaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaWaa8 qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamisamaaBaaa leaacaaIXaaabeaakiaadwhadaqhaaWcbaGaamiDaaqaaiaad2gaaa GccaWGKbGaamiEaiaadsgacaWG0bGaaGiFaiabgsMiJoaalaaabaGa amiAamaaBaaaleaacaaIWaaabeaaaOqaaiaaikdaaaGaeqyTdu2aa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqa aiaaicdaaeaacaWGSbaaniabgUIiYdGccaaIOaGaamyDamaaDaaale aacaWG0baabaGaamyBaaaakiaaiMcadaahaaWcbeqaaiaaikdaaaGc caWGKbGaamiEaiaadsgacaWG0bGaey4kaSYaaSaaaeaacaaIXaaaba GaaGOmaiabew7aLbaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Ga ey4kIipakiaaiIcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGaaGikai aaicdacaaISaGaamiDaiaaiMcacaaIPaWaaWbaaSqabeaacaaIYaaa aOGaamizaiaadshacaaI7aaaaa@7AAA@

| 0 τ u m (l,t) 0 l H 2 u t m dxdt| h 0 2 ε 0 τ 0 l ( u t m ) 2 dxdt+ 1 2ε 0 τ ( u m (l,t)) 2 dt; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaape dabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaamyDamaaCaaa leqabaGaamyBaaaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaWaa8 qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamisamaaBaaa leaacaaIYaaabeaakiaadwhadaqhaaWcbaGaamiDaaqaaiaad2gaaa GccaWGKbGaamiEaiaadsgacaWG0bGaaGiFaiabgsMiJoaalaaabaGa amiAamaaBaaaleaacaaIWaaabeaaaOqaaiaaikdaaaGaeqyTdu2aa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqa aiaaicdaaeaacaWGSbaaniabgUIiYdGccaaIOaGaamyDamaaDaaale aacaWG0baabaGaamyBaaaakiaaiMcadaahaaWcbeqaaiaaikdaaaGc caWGKbGaamiEaiaadsgacaWG0bGaey4kaSYaaSaaaeaacaaIXaaaba GaaGOmaiabew7aLbaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Ga ey4kIipakiaaiIcacaWG1bWaaWbaaSqabeaacaWGTbaaaOGaaGikai aadYgacaaISaGaamiDaiaaiMcacaaIPaWaaWbaaSqabeaacaaIYaaa aOGaamizaiaadshacaaI7aaaaa@7B19@

| 0 τ 0 l f(x,t) u t m (x,t)dxdt| ε 2 0 τ 0 l ( u t m ) 2 dxdt+ 1 2ε 0 τ 0 l f 2 (x,t)dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaape dabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaa caaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaamyDamaaDaaaleaacaWG0baabaGaamyBaaaa kiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhacaWGKb GaamiDaiaaiYhacqGHKjYOdaWcaaqaaiabew7aLbqaaiaaikdaaaWa a8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabS qaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaaIOaGaamyDamaaDaaa leaacaWG0baabaGaamyBaaaakiaaiMcadaahaaWcbeqaaiaaikdaaa GccaWGKbGaamiEaiaadsgacaWG0bGaey4kaSYaaSaaaeaacaaIXaaa baGaaGOmaiabew7aLbaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0 Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipa kiaadAgadaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaadsgacaWG4bGaamizaiaadshacaaIUaaaaa@7D89@

Слагаемые, содержащие следы решения на x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIWaaaaa@3871@ и на x=l, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaWGSbGaaGilaaaa@395E@ оценим с помощью неравенств

u 2 ( ξ i ,t)2l 0 l u x 2 dx+ 2 l 0 l u 2 dx, ξ 0 =0, ξ 1 =l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGOmaaaakiaaiIcacqaH+oaEdaWgaaWcbaGaamyAaaqa baGccaaISaGaamiDaiaaiMcacqGHKjYOcaaIYaGaamiBamaapedabe WcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadwhadaqhaaWcbaGa amiEaaqaaiaaikdaaaGccaWGKbGaamiEaiabgUcaRmaalaaabaGaaG OmaaqaaiaadYgaaaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGH RiI8aOGaamyDamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG4bGaaG ilaiaaysW7caaMe8UaeqOVdG3aaSbaaSqaaiaaicdaaeqaaOGaaGyp aiaaicdacaaISaGaaGjbVlabe67a4naaBaaaleaacaaIXaaabeaaki aai2dacaWGSbaaaa@62F0@

и получим

0 τ ( u m (0,t)) 2 dt2l 0 τ 0 l ( u x m (x,t)) 2 dxdt+ 2 l 0 τ 0 l ( u m (x,t)) 2 dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaaIOaGaamyDamaaCaaa leqabaGaamyBaaaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaaG ykamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG0bGaeyizImQaaGOm aiaadYgadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakm aapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiIcacaWG 1bWaa0baaSqaaiaadIhaaeaacaWGTbaaaOGaaGikaiaadIhacaaISa GaamiDaiaaiMcacaaIPaWaaWbaaSqabeaacaaIYaaaaOGaamizaiaa dIhacaWGKbGaamiDaiabgUcaRmaalaaabaGaaGOmaaqaaiaadYgaaa Waa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqa bSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaaIOaGaamyDamaaCa aaleqabaGaamyBaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGykamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG4bGaamizaiaads hacaaISaaaaa@7651@

0 τ ( u m (l,t)) 2 dt2l 0 τ 0 l ( u x m (x,t)) 2 dxdt+ 2 l 0 τ 0 l ( u m (x,t)) 2 dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaaIOaGaamyDamaaCaaa leqabaGaamyBaaaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaaG ykamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG0bGaeyizImQaaGOm aiaadYgadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakm aapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiIcacaWG 1bWaa0baaSqaaiaadIhaaeaacaWGTbaaaOGaaGikaiaadIhacaaISa GaamiDaiaaiMcacaaIPaWaaWbaaSqabeaacaaIYaaaaOGaamizaiaa dIhacaWGKbGaamiDaiabgUcaRmaalaaabaGaaGOmaaqaaiaadYgaaa Waa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqa bSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaaIOaGaamyDamaaCa aaleqabaGaamyBaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGykamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG4bGaamizaiaads hacaaIUaaaaa@768A@

Выберем ε MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdugaaa@379A@ так, чтобы ν=1( h 0 + 3 2 )ε>0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaaigdacqGHsislcaaIOaGaamiAamaaBaaaleaacaaIWaaabeaa kiabgUcaRmaalaaabaGaaG4maaqaaiaaikdaaaGaaGykaiabew7aLj aai6dacaaIWaGaaGOlaaaa@43A8@ Теперь из (29) следует неравенство

ν 0 τ 0 l ( u t m ) 2 dxdt+ 1 2 0 l a( u x m (x,τ) 2 dx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd42aa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqa aiaaicdaaeaacaWGSbaaniabgUIiYdGccaaIOaGaamyDamaaDaaale aacaWG0baabaGaamyBaaaakiaaiMcadaahaaWcbeqaaiaaikdaaaGc caWGKbGaamiEaiaadsgacaWG0bGaey4kaSYaaSaaaeaacaaIXaaaba GaaGOmaaaadaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGc caWGHbGaaGikaiaadwhadaqhaaWcbaGaamiEaaqaaiaad2gaaaGcca aIOaGaamiEaiaaiYcacqaHepaDcaaIPaWaaWbaaSqabeaacaaIYaaa aOGaamizaiaadIhacqGHKjYOaaa@5DE4@

μ 0 τ 0 l [( u m (x,t )) 2 + ( u x m (x,t)) 2 ]dxdt+ 1 2ε 0 τ 0 l f 2 (x,t)dxdt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaeq iVd02aa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWd XaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaaIBbGaaGikai aadwhadaahaaWcbeqaaiaad2gaaaGccaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiaaiMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIOa GaamyDamaaDaaaleaacaWG4baabaGaamyBaaaakiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaaGykamaaCaaaleqabaGaaGOmaaaakiaai2 facaWGKbGaamiEaiaadsgacaWG0bGaey4kaSYaaSaaaeaacaaIXaaa baGaaGOmaiabew7aLbaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0 Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipa kiaadAgadaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaadsgacaWG4bGaamizaiaadshacaaISaaaaa@718A@ (30)

где μ=max{ l+4 lε , max Q ¯ T | a t |}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiGac2gacaGGHbGaaiiEaiaaiUhadaWcaaqaaiaadYgacqGHRaWk caaI0aaabaGaamiBaiabew7aLbaacaaISaWaaybuaeqaleaaceWGrb GbaebadaWgaaqaaiaadsfaaeqaaaqabOqaaiGac2gacaGGHbGaaiiE aaaacaaI8bGaamyyamaaBaaaleaacaWG0baabeaakiaaiYhacaaI9b GaaGOlaaaa@4D58@ Первое слагаемое правой части (30) ограничено в силу (23), а второе MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ в силу непрерывности функции f(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3AEF@ в Q ¯ T , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyuayaara WaaSbaaSqaaiaadsfaaeqaaOGaaGilaaaa@38A6@ поэтому из неравенства (30) следует существование u t m L 2 ( Q T ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaDa aaleaacaWG0baabaGaamyBaaaakiabgIGiolaadYeadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaamyuamaaBaaaleaacaWGubaabeaakiaaiM cacaaIUaaaaa@4058@

Оценка (30) вместе с оценкой (23) позволяет выполнить предельный переход при m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkabg6HiLcaa@3A43@ и заключить, что искомое решение задачи N действительно имеет производную u t L 2 ( Q T ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWG0baabeaakiabgIGiolaadYeadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaamyuamaaBaaaleaacaWGubaabeaakiaaiMcacaaIUa aaaa@3F65@

Так как кажлое очередное приближение к решению задачи R, которое ищется из соотношений (14), находится как решение задачи N, то существует первая производная по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@ и у решения задачи R. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaai6 caaaa@3782@

Лемма 2 доказана.

Далее, из неравенств (25) и (27), рассуждая так же, как и выше, убеждаемся, что существует r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOCayaafa GaeyicI4maaa@387A@ L 2 (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyicI4Saam itamaaBaaaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaadsfa caaIPaaaaa@3CE8@

Доказательство Теоремы 1

Для доказательства теоремы 1 достаточно показать, что для U(x,t)= u(x,t) r(t) ,p(t)= r (t) r(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypamaalaaabaGaamyDaiaa iIcacaWG4bGaaGilaiaadshacaaIPaaabaGaamOCaiaaiIcacaWG0b GaaGykaaaacaaISaGaaGjbVlaaysW7caWGWbGaaGikaiaadshacaaI PaGaaGypaiabgkHiTmaalaaabaGabmOCayaafaGaaGikaiaadshaca aIPaaabaGaamOCaiaaiIcacaWG0bGaaGykaaaaaaa@53B2@ выполняются все пункты определения 1.

В (12) возьмем v(x,t)=Φ(t)V(x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypaiabfA6agjaaiIcacaWG 0bGaaGykaiaadAfacaaIOaGaamiEaiaaiMcacaaISaaaaa@4391@ где V(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaaiI cacaWG4bGaaGykaiabgkHiTaaa@3A1D@ произвольный элемент из W 2 1 (0,l), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaaIYaaabaGaaGymaaaakiaaiIcacaaIWaGaaGilaiaadYga caaIPaGaaGilaaaa@3CF9@ Φ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaaG ikaiaadshacaaIPaGaeyOeI0caaa@3AB8@ произвольный элемент из L 2 (0,T),Φ(T)=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaadsfacaaIPaGa aGilaiaaysW7cqqHMoGrcaaIOaGaamivaiaaiMcacaaI9aGaaGimai aai6caaaa@4398@ Тогда (12) в силу леммы 2 может быть записано следующим образом:

0 T Φ(t) 0 l [ u t V(x)+a(x,t) u x V (x)+c(x,t)uV(x)]dxdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOGaeuOPdyKaaGikaiaadsha caaIPaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG 4waiaadwhadaWgaaWcbaGaamiDaaqabaGccaWGwbGaaGikaiaadIha caaIPaGaey4kaSIaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaamyDamaaBaaaleaacaWG4baabeaakiqadAfagaqbaiaaiIcacaWG 4bGaaGykaiabgUcaRiaadogacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiaadwhacaWGwbGaaGikaiaadIhacaaIPaGaaGyxaiaadsgacaWG 4bGaamizaiaadshacqGHRaWkaaa@62AE@

+ 0 T Φ(t)V(l)[ α 2 u(0,t)+ β 2 u(l,t)+ 0 l H 2 (x,t)u(x,t)dx]dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaeuOPdyKaaGik aiaadshacaaIPaGaamOvaiaaiIcacaWGSbGaaGykaiaaiUfacqaHXo qydaWgaaWcbaGaaGOmaaqabaGccaWG1bGaaGikaiaaicdacaaISaGa amiDaiaaiMcacqGHRaWkcqaHYoGydaWgaaWcbaGaaGOmaaqabaGcca WG1bGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGHRaWkdaWdXaqa bSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSbaaSqaai aaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG1bGa aGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiaai2faca WGKbGaamiDaiabgkHiTaaa@678F@

0 T Φ(t)V(0)[ α 1 u(0,t)+ β 1 u(l,t)+ 0 l H 1 (x,t)u(x,t)dx]dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaeuOPdyKaaGik aiaadshacaaIPaGaamOvaiaaiIcacaaIWaGaaGykaiaaiUfacqaHXo qydaWgaaWcbaGaaGymaaqabaGccaWG1bGaaGikaiaaicdacaaISaGa amiDaiaaiMcacqGHRaWkcqaHYoGydaWgaaWcbaGaaGymaaqabaGcca WG1bGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGHRaWkdaWdXaqa bSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGibWaaSbaaSqaai aaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG1bGa aGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiaai2faca WGKbGaamiDaiaai2daaaa@673A@

= 0 T Φ(t)r(t) 0 l f(x,t)V(x)dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakiabfA6agjaaiIca caWG0bGaaGykaiaadkhacaaIOaGaamiDaiaaiMcadaWdXaqabSqaai aaicdaaeaacaWGSbaaniabgUIiYdGccaWGMbGaaGikaiaadIhacaaI SaGaamiDaiaaiMcacaWGwbGaaGikaiaadIhacaaIPaGaamizaiaadI hacaWGKbGaamiDaiaai6caaaa@5246@ (31)

Так как Φ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaaG ikaiaadshacaaIPaaaaa@39CB@ выбрана достаточно произвольно, то из (31) следует, что для почти всех t[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaaIWaGaaGilaiaadsfacaaIDbaaaa@3C85@ выполняется тождество

0 l [ u t V(x)+a(x,t) u x V (x)+c(x,t)uV(x)]dx+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4waiaadwhadaWgaaWc baGaamiDaaqabaGccaWGwbGaaGikaiaadIhacaaIPaGaey4kaSIaam yyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamyDamaaBaaaleaa caWG4baabeaakiqadAfagaqbaiaaiIcacaWG4bGaaGykaiabgUcaRi aadogacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhacaWGwbGa aGikaiaadIhacaaIPaGaaGyxaiaadsgacaWG4bGaey4kaScaaa@592D@

+V(l)[ α 2 u(0,t)+ β 2 u(l,t)+ 0 l H 2 (x,t)u(x,t)dx] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaam OvaiaaiIcacaWGSbGaaGykaiaaiUfacqaHXoqydaWgaaWcbaGaaGOm aaqabaGccaWG1bGaaGikaiaaicdacaaISaGaamiDaiaaiMcacqGHRa WkcqaHYoGydaWgaaWcbaGaaGOmaaqabaGccaWG1bGaaGikaiaadYga caaISaGaamiDaiaaiMcacqGHRaWkdaWdXaqabSqaaiaaicdaaeaaca WGSbaaniabgUIiYdGccaWGibWaaSbaaSqaaiaaikdaaeqaaOGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaWG1bGaaGikaiaadIhacaaISa GaamiDaiaaiMcacaWGKbGaamiEaiaai2facqGHsislaaa@5E0E@

V(0)[ α 1 u(0,t)+ β 1 u(l,t)+ 0 l H 1 (x,t)u(x,t)dx]= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaam OvaiaaiIcacaaIWaGaaGykaiaaiUfacqaHXoqydaWgaaWcbaGaaGym aaqabaGccaWG1bGaaGikaiaaicdacaaISaGaamiDaiaaiMcacqGHRa WkcqaHYoGydaWgaaWcbaGaaGymaaqabaGccaWG1bGaaGikaiaadYga caaISaGaamiDaiaaiMcacqGHRaWkdaWdXaqabSqaaiaaicdaaeaaca WGSbaaniabgUIiYdGccaWGibWaaSbaaSqaaiaaigdaaeqaaOGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaWG1bGaaGikaiaadIhacaaISa GaamiDaiaaiMcacaWGKbGaamiEaiaai2facaaI9aaaaa@5DB9@

=r(t) 0 l f(x,t)V(x)dxdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaadk hacaaIOaGaamiDaiaaiMcadaWdXaqabSqaaiaaicdaaeaacaWGSbaa niabgUIiYdGccaWGMbGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca WGwbGaaGikaiaadIhacaaIPaGaamizaiaadIhacaWGKbGaamiDaiaa i6caaaa@4AA7@ (32)

Подставим в (32) u(x,t)=U(x,t)r(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypaiaadwfacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaadkhacaaIOaGaamiDaiaaiMcaaaa@4405@ и учтем, что (U(x,t)r(t)) t = U t (x,t)r(t)U(x,t)r(t)p(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw facaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadkhacaaIOaGaamiD aiaaiMcacaaIPaWaaSbaaSqaaiaadshaaeqaaOGaaGypaiaadwfada WgaaWcbaGaamiDaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiaadkhacaaIOaGaamiDaiaaiMcacqGHsislcaWGvbGaaGikaiaadI hacaaISaGaamiDaiaaiMcacaWGYbGaaGikaiaadshacaaIPaGaamiC aiaaiIcacaWG0bGaaGykaaaa@577D@ в силу (10). Заметим, что r(t)0t[0,T]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGykaiabgcMi5kaaicdacaaMe8UaaGjbVlabgcGiIiaa dshacqGHiiIZcaaIBbGaaGimaiaaiYcacaWGubGaaGyxaiaai6caaa a@46FD@ Поэтому сократив последнее равенство на r(t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGykaiaaiYcaaaa@39FE@ умножив на Φ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaaG ikaiaadshacaaIPaaaaa@39CB@ и проинтегрировав по t[0,T], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaaIWaGaaGilaiaadsfacaaIDbGaaGilaaaa@3D3B@ получим (11). Из (13) после подстановки в него u(x,t)=U(x,t)r(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypaiaadwfacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaadkhacaaIOaGaamiDaiaaiMcaaaa@4405@ следует и выполнение второго равенства определения 1 решения задачи К.

Теорема 1 доказана.

Выводы

Таким образом, в работе исследована разрешимость коэффициентной обратной задачи с нелокальными краевыми условиями и интегральным условием переопределения для одномерного параболического уравнения. Были получены априорные оценки. С помощью полученных оценок и результатов о разрешимости прямой нелокальной задачи для изучаемого уравнения обосновано существование единственного решения поставленной задачи.

×

About the authors

Andrey V. Bogatov

Samara National Research University

Email: andrebogato@mail.ru
ORCID iD: 0000-0001-5797-1930

postgraduate student of the Department of Differential Equations and Control Theory

Russian Federation, Samara

Ludmila S. Pulkina

Samara National Research University

Author for correspondence.
Email: louise@samdiff.ru
ORCID iD: 0000-0001-7947-6121

Doctor of Physical and Mathematical Sciences, Professor of the Department of Differential Equations and Control Theory

Russian Federation, Samara

References

  1. Prilepko A.I., Orlovskii D.G. Determination of the parameter of an evolution equation and inverse problems of mathematical physics. II. Differentsial’nye Uravneniya, 1985, vol. 21, no. 4, pp. 694–701. Available at: https://www.mathnet.ru/rus/de5501. (In Russ.)
  2. Cannon J.R., Lin Y. Determination of a parameter p(t) in some quasi-linear parabolic differential equations. Inverse Problems, 1988, vol. 4, number 1, pp. 35–45. DOI: DOI: http://doi.org/10.1088/0266-5611/4/1/006.
  3. Cannon J.R., Lin Y. Determination of a control parameter in a parabolic partial differential equation. J. Austral. Math. Soc. Ser. B, 33 (1991), pp. 149–163. DOI: https://doi.org/10.1017/S0334270000006962.
  4. Ivanchov N.I. Inverse problems for the heat-conduction equation with nonlocal boundary conditions. Ukrainian Mathematical Journal, 1993, vol. 45, issue 8, pp. 1066–1071. Available at: http://dspace.nbuv.gov.ua/handle/123456789/154453. (In Russ.)
  5. Steklofff W. The problem of cooling a heterogeneous solid. Communications de la Socie?te? mathe?matique de Kharkow. 2-e?e se?rie, 1897, vol. 5, pp. 136–181. Available at: https://www.mathnet.ru/rus/khmo222; http://dspace.univer.kharkov.ua/handle/123456789/13963. (In Russ.)
  6. Denisov A.M. Introduction to inverse problem theory. Moscow: Izdatel’stvo Moskovskogo universiteta, 1994, 208 p. Available at: http://tka4.org/materials/study/7%20sem/From%20Marcus/[7sem]/Obratnye%20Zadachi%20%5BBaev %20A.V.%5D/Book%20%5BDenisov%20A.M.%20Good%20Scan%5D%20-%20Введение%20в%20теорию%20 обратных%20задач.pdf. (In Russ.)
  7. Kamynin V.L. The Inverse Problem of Simultaneous Determination of the Two Lower Space-Dependent Coefficients in a Parabolic Equation. Mathematical Notes, 2019, vol. 106, issue 2, pp. 235–247. DOI: http://doi.org/10.1134/S0001434619070277. (In English; original in Russian). Kamynin V.L. The inverse problem of determining the lower-order coefficient in parabolic equations with integral observation. Mathematical Notes, 2013, vol. 94, issue 2, pp. 205–213. DOI: http://doi.org/10.1134/S0001434613070201. (In English; original in Russian).
  8. Kamynin V.L. The Inverse Problem of Simultaneous Determination of the Two Time-Dependent Lower Coefficients in a Non-Divergent Parabolic Equation in the Plane. Mathematical Notes, 2020, vol. 107, issue 1, pp. 93–104. DOI: http://doi.org/10.1134/S0001434620010095. (In English; original in Russian)
  9. Kozhanov A.I. Solvability of the Inverse Problem of Finding Thermal Conductivity. Siberian Mathematical Journal, 2005, vol. 46, issue 5, pp. 841–856. DOI: http://doi.org/10.1007/s11202-005-0082-2. (In English; original in Russian).
  10. Kozhanov A.I. Inverse problems of recovering the right-hand side of a special kind of parabolic equations. Mathematical notes of NEFU, 2016, vol. 23, no. 4, pp. 31–45. Available at: https://www.mathnet.ru/rus/svfu37; https://www.elibrary.ru/item.asp?id=29959200. EDN: https://www.elibrary.ru/zfpnlf. (In Russ.)
  11. Beylin A.B., Bogatov A.V., Pulkina L.S. A problem with nonlocal conditions for a one-dimensional parabolic equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2022, vol. 26, no. 2, pp. 380–395. DOI: https://doi.org/10.14498/vsgtu1904. (In Russ.)
  12. Gording L. Cauchy’s problem for hyperbolic equations. Moscow: Izdatel’stvo inostrannoi literatury, 1961. Available at: https://libcats.org/book/507115. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Bogatov A.V., Pulkina L.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies